Управление проектом связано с вопросами планирования и организации
работ, создания коллективов разработчиков и контроля за сроками и качеством
выполняемых работ. Техническое и организационное обеспечение проекта
включает выбор методов и инструментальных средств для реализации проекта,
определение методов описания промежуточных состояний разработки, разработку
методов и средств испытаний ПО, обучение персонала и т.п. Обеспечение
качества проекта связано с проблемами верификации, проверки и тестирования
ПО. Верификация - это процесс определения того, отвечает ли текущее
состояние разработки, достигнутое на данном этапе, требованиям этого этапа.
Проверка позволяет оценить соответствие параметров разработки с исходными
требованиями. Проверка частично совпадает с тестированием, которое связано
с идентификацией различий между действительными и ожидаемыми результатами и
оценкой соответствия характеристик ПО исходным требованиям. В процессе
реализации проекта важное место занимают вопросы идентификации, описания и
контроля конфигурации отдельных компонентов и всей системы в целом.
Управление конфигурацией является одним из вспомогательных процессов, поддерживающих основные процессы жизненного цикла ПО, прежде всего процессы разработки и сопровождения ПО. При создании проектов сложных ИС, состоящих из многих компонентов, каждый из которых может иметь разновидности или версии, возникает проблема учета их связей и функций, создания унифицированной структуры и обеспечения развития всей системы. Управление конфигурацией позволяет организовать, систематически учитывать и контролировать внесение изменений в ПО на всех стадиях ЖЦ. Общие принципы и рекомендации конфигурационного учета, планирования и управления конфигурациями ПО отражены в проекте стандарта ISO 12207-2.
Каждый процесс характеризуется определенными задачами и методами их решения, исходными данными, полученными на предыдущем этапе, и результатами. Результатами анализа, в частности, являются функциональные модели, информационные модели и соответствующие им диаграммы. ЖЦ ПО носит итерационный характер: результаты очередного этапа часто вызывают изменения в проектных решениях, выработанных на более ранних этапах.
Модели жизненного цикла ПО. Стандарт ISO/IEC 12207 не предлагает конкретную модель ЖЦ и методы разработки ПО (под моделью ЖЦ понимается структура, определяющая последовательность выполнения и взаимосвязи процессов, действий и задач, выполняемых на протяжении ЖЦ. Модель ЖЦ зависит от специфики ИС и специфики условий, в которых последняя создается и функционирует). Его регламенты являются общими для любых моделей ЖЦ, методологий и технологий разработки. Стандарт ISO/IEC 12207 описывает структуру процессов ЖЦ ПО, но не конкретизирует в деталях, как реализовать или выполнить действия и задачи, включенные в эти процессы.
К настоящему времени наибольшее распространение получили следующие две основные модели ЖЦ: каскадная модель (70-85 г.г.); спиральная модель (86-90 г.г.).
В изначально существовавших однородных ИС каждое приложение представляло собой единое целое. Для разработки такого типа приложений применялся каскадный способ. Его основной характеристикой является разбиение всей разработки на этапы, причем переход с одного этапа на следующий происходит только после того, как будет полностью завершена работа на текущем (рисунок 5). Каждый этап завершается выпуском полного комплекта документации, достаточной для того, чтобы разработка могла быть продолжена другой командой разработчиков.
Положительные стороны применения каскадного подхода заключаются в следующем: на каждом этапе формируется законченный набор проектной документации, отвечающий критериям полноты и согласованности; выполняемые в логичной последовательности этапы работ позволяют планировать сроки завершения всех работ и соответствующие затраты.
Каскадная схема разработки ПО
Каскадный подход хорошо зарекомендовал себя при построении ИС, для
которых в самом начале разработки можно достаточно точно и полно
сформулировать все требования, с тем чтобы предоставить разработчикам
свободу реализовать их как можно лучше с технической точки зрения. В эту
категорию попадают сложные расчетные системы, системы реального времени и
другие подобные задачи. Однако, в процессе использования этого подхода
обнаружился ряд его недостатков, вызванных прежде всего тем, что реальный
процесс создания ПО никогда полностью не укладывался в такую жесткую схему.
В процессе создания ПО постоянно возникала потребность в возврате к
предыдущим этапам и уточнении или пересмотре ранее принятых решений. В
результате реальный процесс создания ПО принимал следующий вид (рисунок 6):
Реальный процесс разработки ПО по каскадной схеме
Основным недостатком каскадного подхода является существенное запаздывание с получением результатов. Согласование результатов с пользователями производится только в точках, планируемых после завершения каждого этапа работ, требования к ИС "заморожены" в виде технического задания на все время ее создания. Таким образом, пользователи могут внести свои замечания только после того, как работа над системой будет полностью завершена. В случае неточного изложения требований или их изменения в течение длительного периода создания ПО, пользователи получают систему, не удовлетворяющую их потребностям. Модели (как функциональные, так и информационные) автоматизируемого объекта могут устареть одновременно с их утверждением.
Для преодоления перечисленных проблем была предложена спиральная модель ЖЦ (рисунок 7 , делающая упор на начальные этапы ЖЦ: анализ и проектирование. На этих этапах реализуемость технических решений проверяется путем создания прототипов. Каждый виток спирали соответствует созданию фрагмента или версии ПО, на нем уточняются цели и характеристики проекта, определяется его качество и планируются работы следующего витка спирали. Таким образом углубляются и последовательно конкретизируются детали проекта и в результате выбирается обоснованный вариант, который доводится до реализации.
Разработка итерациями отражает объективно существующий спиральный цикл создания системы. Неполное завершение работ на каждом этапе позволяет переходить на следующий этап, не дожидаясь полного завершения работы на текущем. При итеративном способе разработки недостающую работу можно будет выполнить на следующей итерации. Главная же задача - как можно быстрее показать пользователям системы работоспособный продукт, тем самым активизируя процесс уточнения и дополнения требований.
Основная проблема спирального цикла - определение момента перехода на следующий этап. Для ее решения необходимо ввести временные ограничения на каждый из этапов жизненного цикла. Переход осуществляется в соответствии с планом, даже если не вся запланированная работа закончена. План составляется на основе статистических данных, полученных в предыдущих проектах, и личного опыта разработчиков.
[pic]
Спиральная модель ЖЦ
Методологии и технологии проектирования ИС. Общие требования к
методологии и технологии. Методологии, технологии и инструментальные
средства проектирования (CASE-средства) составляют основу проекта любой ИС.
Методология реализуется через конкретные технологии и поддерживающие их
стандарты, методики и инструментальные средства, которые обеспечивают
выполнение процессов ЖЦ.
Технология проектирования определяется как совокупность трех составляющих: пошаговой процедуры, определяющей последовательность технологических операций проектирования; критериев и правил, используемых для оценки результатов выполнения технологических операций; нотаций (графических и текстовых средств), используемых для описания проектируемой системы.
Технологические инструкции, составляющие основное содержание технологии, должны состоять из описания последовательности технологических операций, условий, в зависимости от которых выполняется та или иная операция, и описаний самих операций.
Технология проектирования, разработки и сопровождения ИС должна
удовлетворять следующим общим требованям:
технология должна поддерживать полный ЖЦ ПО;
технология должна обеспечивать гарантированное достижение целей разработки
ИС с заданным качеством и в установленное время;
технология должна обеспечивать возможность выполнения крупных проектов в
виде подсистем (т.е. возможность декомпозиции проекта на составные части,
разрабатываемые группами исполнителей ограниченной численности с
последующей интеграцией составных частей). Опыт разработки крупных ИС
показывает, что для повышения эффективности работ необходимо разбить проект
на отдельные слабо связанные по данным и функциям подсистемы. Реализация
подсистем должна выполняться отдельными группами специалистов. При этом
необходимо обеспечить координацию ведения общего проекта и исключить
дублирование результатов работ каждой проектной группы, которое может
возникнуть в силу наличия общих данных и функций;
технология должна обеспечивать возможность ведения работ по проектированию
отдельных подсистем небольшими группами (3-7 человек). Это обусловлено
принципами управляемости коллектива и повышения производительности за счет
минимизации числа внешних связей;
технология должна обеспечивать минимальное время получения работоспособной
ИС. Речь идет не о сроках готовности всей ИС, а о сроках реализации
отдельных подсистем. Реализация ИС в целом в короткие сроки может
потребовать привлечения большого числа разработчиков, при этом эффект может
оказаться ниже, чем при реализации в более короткие сроки отдельных
подсистем меньшим числом разработчиков. Практика показывает, что даже при
наличии полностью завершенного проекта, внедрение идет последовательно по
отдельным подсистемам;
технология должна предусматривать возможность управления конфигурацией
проекта, ведения версий проекта и его составляющих, возможность
автоматического выпуска проектной документации и синхронизацию ее версий с
версиями проекта;
технология должна обеспечивать независимость выполняемых проектных решений
от средств реализации ИС (систем управления базами данных (СУБД),
операционных систем, языков и систем программирования).
Структурный подход к проектированию ИС. Сущность структурного подхода. Сущность структурного подхода к разработке ИС заключается в ее декомпозиции (разбиении) на автоматизируемые функции: система разбивается на функциональные подсистемы, которые в свою очередь делятся на подфункции, подразделяемые на задачи и так далее. Процесс разбиения продолжается вплоть до конкретных процедур. При этом автоматизируемая система сохраняет целостное представление, в котором все составляющие компоненты взаимоувязаны. При разработке системы "снизу-вверх" от отдельных задач ко всей системе целостность теряется, возникают проблемы при информационной стыковке отдельных компонентов.
Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17