Электронные цепи и приборы (шпаргалка)

рис. 1.

В тетроде на характеристике имеется завал, который называется динатронным эффектом (ДЭ). ДЭ возникает при Ua < Uc2. Он обусловлен потоком вторичных электронов с анода на экранирующую сетку, в результате чего анодный ток тетрода уменьшается, а ток экранирующей сетки увеличивается. ДЭ приводит к качественному изменению характеристик Ia = f (Ua) и Ic2 = φ (Ua) тетрода.

Дальше, когда Ua становится больше Uc2, то вторичные электроны остаются на аноде и характеристика выпрямляется.

Тетрод применяется для усиления электрических сигналов. Сетка С2 уменьшает проходную емкость, значит можно использовать лампу на более высоких частотах.

Параметры многоэлектродных ламп.

1. крутизна анодно-сеточной характеристики отражает зависимость анодного тока тетрода или пентода от напряжения Uc1, при условии постоянства всех остальных напряжений

              S = dIa / dUc1, (Uc2, Ua = const)

(для пентода так же Uc3 = const).

2. дифференциальное (внутреннее) сопротивление. При его определении должны поддерживаться постоянными напряжения на управляющей и экранирующей сетках:

             Ri = dUa / dIa, (Uc1, Uc2 = const)

(для пентода так же Uc3 = const).

3. статический коэффициент усиления характеризует относительное влияние напряжении Uc1 и Ua на анодный ток

              μ = dUa / dUc1, (Ia, Uc2 = const)

(для пентода так же Uc3 = const).

29. Электронные лампы Пентод. Принцип действия Основные характеристики и параметры. Применение.

Многоэлектродные лампы (МЛ) – это электронные лампы с общим электронным потоком, содержащие анод, катод и сетки. К МЛ относят тетроды, в том числе и лучевые, пентоды, частотопреобразовательные лампы и лампы специального назначения.

Динатронный эффект можно устранить созданием тормозящего поля для вторичных электронов с анода с помощью сетки С3, вводимой в пространство А – С2, которая называется защитной. На сетку С3 подаем отрицательное напряжение. Назначение анода, катода, С1 и С2 то же самое, что и в других лампах. Вторичные электроны, которые выходят из анода не дойдут до С2, возвращаются обратно на анод, т.к. отталкиваются от отрицательно заряженной сетки С3. В результате этого динатронный эффект исчезает.

рис. 1.

В таких лампах проходная емкость еще меньше и они применяются на более высоких частотах.

Параметры многоэлектродных ламп.

1. крутизна анодно-сеточной характеристики отражает зависимость анодного тока тетрода или пентода от напряжения Uc1, при условии постоянства всех остальных напряжений

              S = dIa / dUc1, (Uc2, Ua = const)

(для пентода так же Uc3 = const).

2. дифференциальное (внутреннее) сопротивление. При его определении должны поддерживаться постоянными напряжения на управляющей и экранирующей сетках:

             Ri = dUa / dIa, (Uc1, Uc2 = const)

(для пентода так же Uc3 = const).

3. статический коэффициент усиления характеризует относительное влияние напряжении Uc1 и Ua на анодный ток

              μ = dUa / dUc1, (Ia, Uc2 = const)

(для пентода так же Uc3 = const).

31. Гибридные микросхемы. Принцип построения. Технологические приемы реализации. Применение.

Гибридная микросхема (ГМ) выполняется на диэлектрической пластинке (керамика, органическое стекло, текстолит). Элементы выполняются по пленочной и полупроводниковой технологии, поэтому такие микросхемы называются гибридными. Активные элементы (диоды, транзисторы) выполняются по обыкновенной полупроводниковой технологии, при помощи таких процессов, как диффузия, фотолитография, окисление. Эти элементы разрезаются отдельно, покрываются лаком, и присоединяются к остальной части схемы при помощи сварных соединений. Пассивные элементы (R, L, C) выполняются в виде тонких пленок из вольфрама, тантала, сплава МЛТ. Обкладки конденсаторов выполняются из таких же материалов, а диэлектрическая прокладка наносится ч/з трафарет из диэлектрической пасты. Такой метод нанесения элементов в виде тонких пленок ч/з трафарет, называется пленочной технологией.

Достоинства ГМ:

1. возможность выбора элемента с разными параметрами.

2. хорошая электроизоляция элемента.

Недостатки:

1. большие размеры, вес, стоимость.

2. больше сварных соединений, а значит меньше надежность.

3. меньше степень интеграции.


43. Компараторы.

Компаратор (К) – устройство, предназначенное для сравнения двух  напряжений. На выходе К устанавливается U, соответствующее логической единице: uвых = U1, если напряжение неинвертирующего входа u+вх больше напряжения инвертирующего входа u-вх. В противоположном случае, когда u-вх > u+вх, на выходе устанавливается напряжение соотв. логическому нулю: uвых = U0.

В качестве К можно использовать операционный усилитель. Однако уровни выходного U ОУ определяются напряжениями питания и не соответствуют уровням логических сигналов цифровых интегральных схем.

Как и в ОУ, в К входной каскад – дифференциальный. Для повышения чувствительности за диф. каскадом следует каскад усиления напряжения. Выходной каскад К отличается от соотв. каскада ОУ и представляет собой электронный ключ.

Вход. показатели компаратора:

Rвх, входной ток сдвига Iвх сд = Δiвх = j+ - j-, напряжение смещения Есм, дифф. коэфф усиления Кд, полоса пропускания – аналогичны соотв. параметрам ОУ.

Выходные показатели:

Уровни сигналов U0, U1, коэфф разветвления N – анлогичны показателям цифровых ИС.

Специфическим параметром К явл. зона неопределенности ΔUн, равная разности входных напряжений, которой соотв. выходные напряжения между U1 и U0:

                        ΔUн = (U1-U0) / KД.

К часто используют  в качестве пороговых устройств, предназначенных для выделения сигналов, значения которых больше или меньше некоторого заданного. В таких устройствах на один вход подается сигнал, на другой – опорное напряжение – порог сравнения.

32. Интегральные микросхемы. Принцип построения. Технологические приемы реализации. Применение.

Интегральной микросхемой (ИМС) является многоэлектронное изделие, выполняющее определенную функцию преобразования и обработки сигнала, и имеющее высокую плотность упаковки электрически соединенных элементов и (или) кристаллов.

Элементом ИМС называют часть ИМС, реализующую функцию какого-либо электрорадиоэлемента, которая выполнена нераздельно от кристалла или подложки. Обычно все элементы ИМС изготавливают одновременно в ходе единого технологического цикла. Полупроводниковые ИМС выполняются на кремниевых пластинках диаметром 30 – 60 мм, при помощи таких технологических процессов как резка, шлифовка, очистка, окисление, травление, фотолитография, диффузия. На одной пластине помещаются до 1000 микросхем и одновременно технологический процесс идет на несколько десятков пластин, поэтому стоимость одной пластины небольшая.

Основная структура полупроводниковой ИМС – это транзистор. На структуре транзистора выполняются все остальные элементы схемы. Для диода используются эмиттерный или коллекторный p-n-переходы, в таком случае лишний третий вывод присоединяется к выводу базы. Такое подключение называется транзистор в диодном включении.

Конденсатор. В качестве него применяется емкость p-n-перехода.

Резистор. В качестве резистора применяется область эмиттер или база, или коллектор, для чего только от этих областей делается 2 вывода.

Изоляция между элементами выполняется при помощи обратно включенных p-n-переходов, которые образуются между подложкой микросхемы и элементом. Такой p-n-переход имеет большое сопротивление, а значит выполняется изоляция.

Достоинства ИМС:

1. высокая степень интеграции.

2. малое количество сварных соединений, а значит высокая надежность.

3. малый размер, вес.

4. низкая себестоимость.

Недостатки ИМС:

1. один из больших недостатков – трудно получить большое количество элементов с разными параметрами.

2. существуют какие-то паразитные связи между элементами.

3. такие микросхемы, как правило, маломощные.

34. Принцип построения усилительных каскадов на транзисторах.

В качестве базового узла предварительных усилителей наиболее широко применяется усилительный каскад на биполярном транзисторе, включенный по схеме с ОЭ. Простейшая схема такого каскада приведена на рис. 1.

рис. 1.

Графики, поясняющие его работу на рис. 2.

рис. 2.

Для получения наименьших нелинейных искажений усиливаемого сигнала, рабочую точку А выбирают посередине рабочего участка характеристик (участок ВС на рис. 2.b). Выбранный режим обеспечивается требуемой величиной IбА, задаваемого .

При подаче на вход транзистора напряж. сигнала Uвх происходит изменение ток базы, а, следовательно, и изменение , и напряжения на . Амплитуда выходного тока Iкm примерно в βБТ раз больше амплитуды базового тока Iбm, а амплитуда коллекторного напряж. Uкm во много раз больше амплитуды Uвх:

                       Uкm >> Uвх.m = Uбэ.m.

Т.о каскад усиливает I и U входного сигнала, что иллюстрирует рис. 2.a и b.

Пользуясь графиками нетрудно определить основные параметры каскада:

1. входное сопротивление Rвх = Uбэm / Iбm.

2. коэффициент усиления по току Hi = Iкm / Iбm.

3. коэффициент усиления по напряжению Hu = Uкm / Uбэm.

4. коэффициент усиления по мощности Hp = HuHi.

Обычно каскады предварительных усилителей работают в режиме усиления слабых сигналов. Это особенность позволяет использовать аналитические методы расчета параметров каскадов по известным H-параметров транзисторов.

37. Обратная связь в усилителях. Применение обратной связи для коррекции характеристик усилителей.

Цепь, через которую часть выходного сигнала подается из выходной цепи обратно во входную цепь,.назыв. цепь обрат связи.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать