Электронные и микроэлектронные приборы




2. Полупроводниковые резисторы

Полупроводниковые резисторы – это резисторы, изготовленные на основе полупроводникового материала методами полупроводниковой технологии. Различают объемные и диффузионные полупроводниковые резисторы.

 Объемные резисторы получают путем создания омических (невыпрямляющих) контактов металла с полупроводником. При идеальных контактах удельное сопротивление rn такого резистора определяется объемными свойствами полупроводника.

Поскольку на практике используют легированные полупроводники, их удельное сопротивление в случае полной ионизации примеси:


rhn=[qmhNд+]-1 ïðè  Nд  >> Na

 

rрn=[qmðNа-]-1              ïðè  Nа  >> Nä

 

Несмотря на простоту конструктивного и технологического исполнения, объемные резисторы не нашли широкого применения из-за большой занимаемой площади и температурной нестабильности.

Диффузионные резисторы формируют на основе диффузионных слоев, толщина которых намного меньше их ширины и длинны. Диффузионные резисторы изолированы от остального объема полупроводника p-n -переходом. Они могут быть изготовлены одновременно с другими элементами при формировании структуры полупроводниковых ИМС. Поэтому для реализации диффузионных резисторов в полупроводниковых ИМС используют те же диффузионные слои, которые образуют основные структурные области транзистора: базовую, эмиттерную, или коллекторную.

Сопротивление диффузионного резистора R определяется удельным сопротивлением  полупроводникового слоя, его глубиной и занимаемой площадью:



                                    ( 1 )




где rs -удельное поверхностное сопротивление слоя

Диффузионные резисторы могут быть реализованы на основе любой из структурных областей транзистора. Для их использования в ИМС на поверхности структурных областей создают омические контакты.

Структура диффузионного резистора на основе структурных областей планарно-эпитаксиального транзистора на рис. 2. 

 
 


Наиболее распространенны резисторы, сформированные на основе базовых слоев. При этом достигается сочетание высокого сопротивления слоя необходимого для уменьшения площади, занимаемой резистором и приемлемого температурного коэффициента.

Рис. 2

Для получения диффузионных резисторов

требуемого сопротивления, определяемого по формуле (1), диффузионные слои  формируют в виде прямоугольника или змейки. В этом случае отношение l/b стремятся сделать по возможности большим. Для диффузионных резисторов характерно наличие паразитных элементов - распределенного конденсатора и распределенного транзистора.

Кроме диффузионных резисторов в полупроводниковых ИМС применяют резисторы на основе МДП-структуры. При этом в качестве резистора используют МДП-транзистор, работающий в режимах, наклонной области ВАХ. Использование МДП-структур в качестве  резисторов позволяет реализовать целый ряд цифровых ИМС только на одних МДП-транзисторах.
3. Элемент КМОП - логики.


В цифровых ИМС практическое применение получили полевые транзисторы с оксидным диэлектриком, образующие контакт металл–оксид–полупроводник (КМОП).  На рисунке 2 приведена принципиальная схема элемента ИЛИ–НЕ на два входа, содержащая один нагрузочный (VT3) и два логических (VT1 и VT2) транзистора.  

               

                                                                        U и.п.


                               VT3

 


                                                                         F (Выход)

                                                                                   

                        VT1                                                                                        

                                                                        B (Вход 2)


   А (Вход 1)                                        VT2                                                                                                                                      А            1

                                                                                                                                                                                                         В                       F=A+B















Рис. 3


Таблица 11

А

В

F

0

0

1

1

0

0

0

1

0

1

1

0


На рисунке 3 приведена схема логического элемента ИЛИ-НЕ. Она состоит из двух логических VT1, VT2 и одного нагрузочного VT3 транзисторов. Принцип работы (таб.1) заключается в следующем:

При подаче на оба логических транзистора (входы А и В) логического 0 они остаются закрытыми (IИС=0). Сопротивление перехода для Iи.п. велико, поэтому ток источника питания протекает через VT3 на выход схемы (контакт F) формируя уровень логической 1. При подаче хотя бы на один из входов логической    1 транзистор открывается, сопротивление перехода падает Iи.п. протекает на корпус тем самым на выходе схемы формируется уровень логического 0.

Элементы КМОП-логики нашли широкое применение в микросхемотехнике. На базе этих элементов строятся дешифраторы, триггеры, счетчики, регистры, сумматоры, умножители, элементы ПЗУ и т. д и т.п.      


4. Принцип действия и устройство тетрода

Развитие техники радиоприема, связанное с необходимостью усиления напряжений высокой частоты, выявило один из основ­ных недостатков триода. Было замечено, что усилители на трио­дах, предназначенные для этой цели, работают неустойчиво и не обеспечивают надежного усиления.

Исследования показали, что причиной этого является нали­чие значительной емкости между электродами лампы. Вопрос этот очень важен, поэтому на нем стоит остановиться подробнее.

Между любыми двумя проводниками, не соприкасающимися друг с другом, существует электрическая емкость.

Две металлические пластины, разделенные промежутком, об­разуют конденсатор. Конденсатор, включенный в электрическую цепь, создает непреодолимое препятствие для постоянного тока, но для переменного тока представляет лишь некоторое сопротив­ление. Чем больше емкость конденсатора и чем выше частота пе­ременного тока, тем меньшее сопротивление представляет кон­денсатор его прохождению. Как мы уже видели, внутри лампы можно различить три такие емкости: между сеткой и катодом, между сеткой и анодом и между анодом и катодом. Анализ ра­боты лампы показывает, что наиболее вредна емкость между анодом и сеткой, обозначаемая обычно СAC.

Вредное действие этой емкости можно понять, посмотрев на наши рисунки. Предположим, что лампа должна усиливать на­пряжение не звуковой, а высокой частоты. На сетку лампы по­ступают слабые электрические колебания Uвх. Усиленные колеба­ния этой же частоты, но с напряжением Uвых выделяются на анодной нагрузке. Если между анодом лампы и ее сеткой есть емкость Оде, то через нее часть усиленного переменного напряжения будет передана из анодной цепи обратно в сеточную. Это напряжение добавится к основному сигналу, действующему в .цепи сетки. Напряжение сигнала на входе как бы возрастает, вследствие чего увеличивается и напряжение, выделяющееся на анодной нагрузке. Это в свою очередь приведет к передаче через емкость анод — сетка в сеточную цепь еще большего напряже­ния и т. д. В результате работа лампы становится неустойчивой, может возникнуть самовозбуждение и лампа из усилителя коле­баний превратится в генератор, т. е. в самостоятельный источник



колебаний. Возникновение в усилителе самовозбуждения про­является в виде сильных искажений и свиста.

Опасность неустойчивой работы усилителя будет тем больше, чем выше частота переменного тока (тем меньшее сопротивление представляет для него емкость) и чем больше усиление лампы. Это обстоятельство создало весьма серьезные затруднения

при­ему и усилению слабых сигналов высокой частоты и заставило искать способы борьбы с вредным влиянием емкости сетка — анод трехэлектродной лампы.

Физика знает способы уменьшения емкости между двумя проводниками. Такими способами, например, является уменьше­ние размеров проводников,. образующих конденсатор, и увеличе­ние расстояния между ними. Эти способы применялись при кон­струировании триодов, но значительного эффекта они не дали, потому что чрезмерно уменьшать электроды по ряду соображе­ний нельзя (например, уменьшение размеров анода приводит к необходимости снизить анодный токи, следовательно, все пара­метры лампы), а увеличению расстояний между электродами кладут предел размеры лампы и ряд других причин.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать