Формирование электронных пучков. Магнитные фокусирующие линзы

Формирование электронных пучков. Магнитные фокусирующие линзы

Кабардино-Балкарский Государственный университет им.   Б.М Бербекова

 

 

 

 

 

 

Курсовая работа

по курсу вакуумной и плазменной физики


 

 

На тему:

 

Формирование электронных пучков.

 Магнитные фокусирующие линзы.

 

 

 

 

 

 

 

 

 

 

 

 

 

Выполнил: Мостный А.С.

 

Студент 3 курса ФМиКТ

ТТЭ 2 группа

 

                                                                                                   Проверил: Аккизов Ю.А.

 

Нальчик

1.1

Классификация электроннолучевых приборов

 

Электроннолучевыми приборами называются электровакуумные приборы, действие которых основано на формировании и управлении по интенсивности и положению одним более электронными пучками. Несмотря на большое разнообразие электронно-лучевых приборов, как по устройству, так и по назначению, между ними есть много общего. Так, электронно-лучевой прибор всегда содержит в баллоне три основных элемента: электронный прожектор, формирующий электронный пучок, или луч, отклоняющую приёмник электронов – экран или систему электродов электронного коммутатора.

Если в основу классификации электронно-лучевых приборов положить наиболее существенный преобразовательный признак, то все эти приборы можно разделить на четыре группы:


1.      Приборы, преобразующие электрический сигнал в изображение – приёмные электронно-лучевые трубки: индикаторные и осциллографические трубки, кинескопы и другие.

2.      Приборы, преобразующие изображение в электрический сигнал – передающие электронно-лучевые трубки

3.      Приборы, преобразующие электрический сигнал в электрический сигнал – потенциалоскопы, электронно-лучевые коммутаторы.

4.       Приборы, преобразующие невидимое изображение в изображение видимое – электроннооптический преобразователь, электронный микроскоп.

 

1.2

Устройство и принцип действия трубки с электростатическим управлением

 

Осциллографическая электронно-лучевая трубка представляет собой стеклянный баллон специальной формы, в котором создан высокий вакуум. В ней расположены электроды, осуществляющие формирование электронного потока в виде тонкого электронного луча. И электроды, управляющие этим лучом. Совокупность электродов, формирующих электронный луч, называется электронным прожектором. Он обычно состоит из катода К, модулятора М, первого А1 и второго А2 анодов. Наиболее часто применяют оксидные или камерные подогревные катоды, выполненные в виде стаканчика, у которого активная область располагается на наружной поверхности дна (Рис1.). 


Модулятор главным образом служит для изменения плотности тока электронного луча. К модулятору подводится небольшой отриц-льный потенциал, регулируемый в пределах от нуля до     -30 вольт.

 Электронный поток формируется только за счёт электронов, прошедших через диафрагму диаметром около 1 мм. Таким образом, электроны, вектор начальной скорости которых значительно отклоняется от нормали к поверхности катода, не проходят через диафрагму и в формировании электронного луча не участвуют. Предварительной фокусировке электронного потока способствует небольшой отрицательный потенциал, проводимый к управляющему электроду. Изменение этого потенциала приводит к изменению траектории электронов, и при более отрицательном потенциале электроны, ранее проходившие по периферии диафрагмы, отражаются, а плотность электронного потока уменьшается. Далее по оси трубки располагаются ещё два цилиндра – первый и второй аноды. Первый анод А1, находясь под положительным потенциалом в несколько сотен вольт, ускоряет движущийся от катода поток электронов. Ко второму аноду А2 подводится напряжение, достигающее в некоторых электроннолучевых приборах десятков киловольт, и поток электронов покидает второй анод с достаточно высокой скоростью. Кроме ускорения электронов, назначение анодов заключается в формировании узкого электронного пучка – фокусировании электронного потока. Вследствие различия потенциалов катода, модулятора, первого и второго анодов в пространстве между ними создаются неоднородные электрические поля - электронные линзы. Конфигурация электродов и их потенциалы подбираются таким образом, что вся система образует две электростатические линзы: первую – между модулятором и ускоряющим электродом и вторую – между ускоряющим электром и вторым анодом. Проходя через эти линзы, электроны образуют узкий сходящийся у экрана пучок – электронный луч. Вся система электродов крепится на траверсах и образует единое устройство, называемое электронной пушкой. Выйдя из электронной пушки, электронный луч попадает в систему отклоняющих пластин, служащую для управления положением луча в пространстве: Х - пластины искривляют электронный луч в горизонтальной плоскости, У - пластины - в вертикальной. На внутреннюю стенку выпуклого торца трубки наносят люминофор- вещество, светящееся при бомбардировке электронами, которое совместно со стеклом купола образуют экран Э.  С помощью отклоняющих пластин электронный луч может быть направлен в любую точку экрана. При этом, если положение луча зафисиксировано, с внешней стороны экрана через стекло просматривается светящееся пятно, которое имеет малые размеры и условно может считаться светящейся точкой. Чтобы под действием электронного луча экран не накапливал электростатических зарядов, коэффициент вторичной электронной эмиссии люминофора делают близким к единице σ =1 . Для удаления вторичных электронов на внутреннюю боковую поверхность баллона наносят токопроводящее графитовое покрытие, которое внутри баллона соединяют со вторым анодом.

Все электроды электронного прожектора обычно питаются от одного источника с помощью делителя напряжения. На второй анод, соединённый с внутренним графитовым покрытием, подают напряжение несколько киловольт, на первый анод – несколько сотен, на модулятор – минус несколько десятков вольт (все относительно катода). Так как второй анод соединяется с внутренним графитовым покрытием, геометрические размеры которого велики, то для того чтобы между графическим покрытием и оператором не возникло паразитных электрических полей, влияющих на электронный луч, в осциллографических трубках оказывается целесообразным заземлении не минуса, а плюса источника питания.

Если напряжение на отклоняющих пластинах изменяются, то электронный луч, а, следовательно, и светящееся пятно на экране перемещаются, описывая  траекторию в соответствии с изменением напряжения на отклоняющих пластинах может визуально наблюдаться на экране электроннолучевой трубки. Диаметр светящегося пятна и толщина линии движения луча тем меньше, чем лучше сфокусирован электронный луч. Яркость свечения экрана зависит от числа бомбардирующих его в единицу времени электронов и от скорости их движения. Яркость свечения можно изменять, регулируя напряжение на модуляторе и, следовательно, изменяя плотность тока электронного луча, а также за счёт скорость движения электронов, которая определяется напряжением на втором аноде.


1.3


Электростатическая фокусировка электронного луча


При соответствующей форме электродов прожектора и разности потенциалов между ними создаётся такое неоднородное электрическое поле, которое ускоряет электроны луча в сторону экрана и одновременно производит его фокусировку.  Фокусировка электронного луча производится дважды: в точках F1 и F2. Это свидетельствует о наличии в электронном прожекторе двух электроннооптических систем: короткофокусной с фокусом в точке F1 (образуется катодом, модулятором и первым анодом) и длиннофокусной  с фокусом в точке  F2, расположенной в плоскости экрана (образуется первым и вторым анодами). Принцип действия обеих систем совершенно одинаков, поэтому достаточно рассмотреть действие только одной, например длиннофокусной системы.

На рисунке 2а) показано неоднородное электрическое поле, возникающее внутри прожектора между первым и вторым анодами при условии Ua>Ua1.

 На рисунке 2б), выделена лишь одна электрическая силовая линия и показана траектория электрона, отклоняющегося от оси под небольшим углом и встречающегося с силовой линией в точке А. В этой точке вектор напряженности электрического поля Е можно разложить на горизонтальную Ег и вертикальную Ев составляющие. Согласно соотношению Ег будет ускорять электрон в сторону экрана, а Ев будет прижимать его к оси, то есть осуществлять фокусировку.



                                                             0

.





















При повторной встрече электрона с этой силовой линией в точке В Ег по-прежнему будет оказывать на него ускоряющее действие, а Ев будет способствовать расфокусировке. Но вертикальная  составляющая в точке В меньше, чем в точке А, так как электрон вылетает из неоднородного электронного электрического поля, прижатым к оси. Кроме того, в районе точки В он имеет большую скорость, чем в районе точки А, поэтому отклоняющая сила воздействует на электрон меньший промежуток времени.

Следовательно, фокусирующее действие неоднородного электрического поля оказывается преобладающим. Аналогично действует на световой луч оптическая система, состоящая из собирательной и рассеивающей линз при условии, что оптическая сила собирающей линзы больше рассеивающей (рис.2в) ).

Страницы: 1, 2



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать