ИДИР. Прибор для измерения количества и длительности импульса на координатных АТС )
Министерство Образования Республики Молдова.
Технический Университет Молдовы.
Кафедра телекоммуникаций.
Курсовой проект.
По курсу: Микропроцессоры телекоммуникаций.
Тема: Прибор для измерения количества и длительности импульса, на координатных АТС.
Работу выполнил ст. гр. TLC-023 Лукин. И
Работу проверил Настас. В
Кишинёв 2005.
Содержание:
1. Задание к курсовому проекту.
2. Введение.
3. Краткие теоретические сведения.
4. Проектирование структурной схемы устройства. (Объяснение функций блоков и сигналов.)
5. Проектирование принципиальной схемы устройства. (Разработка участков принципиальной схемы каждого блока из структурной схемы с объяснением типа используемых микросхем.)
6. Принципиальная схема устройства.
7. Анализ функционирования устройства.
8. Внешний вид устройства и его технические характеристики.
9. Список литературы.
1.Задание к курсовому проекту.
Разработать цифровое устройство для счёта числа импульсов с индикацией результата, а также измерения длительности конкретного импульса от 1 до 10, в пределах от 1мс до 999мс, как механических, так и электрических. Как на замыкание контактов, так и на размыкание.
2.Введение.
В настоящее время весьма актуальной задачей является техническое перевооружение, быстрейшее создание и повсеместное внедрение принципиально новой радиоэлектронной техники. В решении этой задачи одна из ведущих ролей принадлежит цифровой технике. Интегральные микросхемы в настоящее время являются одним из самых массовых изделий современной микроэлектроники. Применение микросхем облегчает расчет и проектирование функциональных узлов и блоков радиоэлектронной аппаратуры, ускоряет процесс создания принципиально новых аппаратов и внедрения их в серийное производство. Широкое использование микросхем позволяет повысить технические характеристики и надежность аппаратуры. Отечественной электронной промышленностью освоен выпуск широкой номенклатуры микросхем, ежегодно создаются десятки и сотни тысяч новых приборов для перспективных радиоэлектронных средств. В поиске и выборе элементной базы и схемотехнических решений существенную помощь может оказать систематизированная информация о существующих интегральных микросхемах.
Развитие и совершенствование электронно-вычислительной техники, устройств радиовещания и телевидения, радиоспортивной аппаратуры и всевозможных кибернетических автоматов в значительной степени определяются внедрением в них цифровой техники. Это обусловлено определенными преимуществами цифровых устройств по сравнению с аналоговыми: более высокой надежностью; стабильностью параметров при воздействии дестабилизирующих факторов. Высокой точностью обработки информации; значительным сокращением трудоемкости и упрощением операций регулировки и настройки, что особенно важно для радиолюбителей; возможностью создания микросхем с очень высокой степенью интеграции.
Особенно широкое применение нашли цифровые устройства в электронно-вычислительной технике. В частности, цифровые вычислительные машины являются в настоящее время наиболее универсальными. Все узлы ЭВМ содержат элементы цифровой техники. На их базе реализуются устройства, которые производят арифметические и логические преобразования поступающей информации. С помощью элементов цифровой техники осуществляется запоминание и хранение информации, управление вычислительным процессом, ввод и вывод информации. Успехи в области разработки быстродействующих элементов цифровой техники позволили создать ЭВМ, выполняющие десятки миллионов арифметических операций в секунду. Значительно расширилась возможность построения малогабаритных вычислительных устройств с появлением микропроцессоров — стандартных универсальных программируемых больших интегральных схем со структурой, аналогичной: ЭВМ. Применение встроенных микро-ЭВМ позволяет придать разнообразным устройствам «разумный» характер и значительно расширить их функциональные возможности.
Принципиально новые возможности открывает применение цифровых интегральных схем в радиовещании и радиосвязи. Так, использование цифровых синтезаторов частоты позволило существенно снизить аппаратурные затраты и повысить фазовую стабильность генерируемых сигналов. Обработка сигналов цифровыми методами позволяет обеспечить высокую точность, стабильность параметров и получить характеристики, не достижимые аналоговыми методами. Весьма перспективно внедрение цифровой техники в телевидении. Цифровое телевидение позволяет повысить качество передачи сигналов благодаря существенному уменьшению накоплений искажений в цифровых линиях связи по сравнению с аналоговыми, а также за счет применения специальных способов кодирования, обнаруживающих и исправляющих ошибки передачи информации. Сигналы, представленные в цифровой форме, практически не подвержены амплитудным и фазовым искажениям, что позволяет передавать телевизионную информацию на большие расстояния с сохранением ее высокого качества. В результате использования методов и устройств цифровой техники становится возможным длительный безподстроечный режим работы телевизионной аппаратуры, а это имеет большое значение для повышения технологичности производства.
Общая характеристика цифровых микросхем.
Цифровые микросхемы предназначены для обработки, преобразования и
хранения цифровой информации. Выпускаются они сериями. Внутри каждой серии имеются объединенные по функциональному признаку группы устройств: логические элементы, триггеры (автоматы с памятью), счетчики, элементы арифметических устройств (выполняющие различные математические операции) и т. д. Чем шире функциональный состав серии, тем большими возможностями может обладать цифровой автомат, выполненный на базе микросхем данной серии. Микросхемы, входящие в состав каждой серии, имеют единое конструктивно-технологическое исполнение, единое напряжение питания, одинаковые уровни сигналов логического 0 и логической 1. Все это делает микросхемы одной серии совместимыми. Основой каждой серии цифровых микросхем является базовый логический элемент. Как правило, базовые логические элементы выполняют операции И-НЕ либо ИЛИ—НЕ и по принципу построения делятся на следующие основные типы: элементы диодно-транзисторной логики (ДТЛ), резистивно-транзисторной логики (РТЛ), транзисторно-транзисторной логики (ТТЛ), эмиттерно-связанной транзисторной логики (ЭСТЛ), микросхемы на так называемых комплементарных МДП-структурах (КМДП). Элементы КМДП цифровых микросхем используют пары МДП-транзисторов (со структурой металл-диэлектрик - полупроводник) — с каналами р-типов и n-типов. Базовые элементы остальных типов выполнены на биполярных транзисторах. В радиолюбительской практике наибольшее распространение получили микросхемы ТТЛ серии К155 и КМДП (серий К176 и К561).
Общие сведения о цифровых интегральных микросхемах.
Условные обозначения ИС, выпускаемых отечественной промышленностью, устанавливаются ОСТ 11073.915-80, в соответствии с которым обозначения ИС состоят из четырех основных элементов. Первый элемент - цифра, обозначающая группу по технологическому признаку, к первой группе относятся полупроводниковые ИС (цифры 1,5,6,7), ко второй - гибридные ИС=(цифры 2,4,8), к третьей - прочие (цифра 3). Второй элемент обозначает порядковый номер серии. Третий элемент состоит из двух букв и определяет функциональное назначение ИС. Первая из букв определяет подгруппу, а вторая - вид ИС. Четвертый элемент - порядковый номер разработки ИС данного функционального типа
Пример условного обозначения ИС 1533ТМ2
3.Краткие теоретические сведения.
В приборе ”Импульс”, разработанным согласно заданию курсового проекта, использовались следующие микросхемы:
К561ЛА7-2шт (Четыре 2И-НЕ),
К561ТМ2-1шт (Два D-триггера с установками 0 и 1),
К561ИЕ8-1шт (Десятичный счётчик-делитель «пятиразрядный счётчик Джонсона и дешифратор»),
К561ИЕ16-1шт (14-разрядный двоичный счётчик-делитель с последовательным перебором),
К176ИЕ4-4шт (Десятичный счётчик с дешифратором для 7-сегментного светодиодного или электролюминесцентного индикатора).
Логические элементы.
К комбинационной логике относятся ИС, элементы которых не обладают памятью, т.е. выходной сигнал определяется только комбинацией входных переменных в данный момент времени.
Логические элементы И-НЕ. К561ЛА7
Логические элементы ИС данного типа реализуют переключательную функцию вида Y=D1*D2*...*Dn. Различие логических элементов заключается не только в параметрах выхода, но, прежде всего в количестве входов. Количество логических элементов в одном корпусе ИС также различно. Условные графические обозначения ИС приведены ниже. Расширение функциональных возможностей ИС возможно путем соединения логических элементов.
Микросхема К561ТМ2. D-триггер-триггер памяти, триггер задержки. Используется для запоминания двоичного сигнала. Такие микросхемы используются для задержки сигнала во времени. Микросхемы бывают статическими и динамическими, с прямыми и инверсными входами, но только синхронными.
Страницы: 1, 2