История развития проводной многоканальной электросвязи

Другой недостаток ПЦИ заключается в том, что нарушение синхронизма в групповом сигнале ЦСП более высокого уровня приводит к нарушению синхронизма во всех компонентных потоках, а восстановление синхронизма при этом должно осуществляться последовательно от высших ступеней иерархии к низшим, что требует относительно большого времени.

Наконец, плезиохронная цифровая иерархия обладает слабыми возможностями в организации служебных каналов для целей контроля и управления потоком в сети и практически полное отсутствие средств маршрутизации потоков нижних уровней [3, 10].

Указанные недостатки были преодолены в новой технологии, получившей название SDH (Synchronous Digital Hierarchy, синхронная цифровая иерархия). Однако системы ПЦИ до сих пор существуют в большом количестве и продолжают эксплуатироваться. Фирмы-производители предлагают на рынке телекоммуникационного оборудования множество наименований изделий, работающих по этой технологии.

4     Цифровые системы передачи синхронной цифровой иерархии

Недостатки, присущие цифровым системам передачи плезиохронной цифровой иерархии, потребовали создание новой технологии транспортной сети. В связи с этим перед разработчиками встали следующие задачи:

-         необходимо было унифицировать иерархию скоростей цифровых потоков и продолжить его за пределы, регламентированные стандартами ПЦИ;

-         новая технология должна была позволять вводить и выводить компонентные потоки без полного демультиплексирования группового сигнала, для чего компонентные потоки должны занимать строго определенное положение в цикле;

-         необходимо было разработать новые структуры циклов, которые бы позволили организовать не только примитивную сигнализацию, но и маршрутизацию потоков;

-         технология должна была обеспечить в пределах иерархии возможность управления сетями с топологией любой сложности;

-         интерфейсы транспортной сети должны быть стандартизованы, чтобы обеспечивалась возможность совместной работы оборудования различных фирм-производителей.

В начале 80-х годов американскими инженерами было предложено:

-         использовать синхронный режим работы сети вместо плезиохронного или асинхронного;

-         побитовое объединение компонентных потоков заменить побайтовым;

-         использовать известную технологию инкапсуляции данных в пакеты (концепция виртуальных контейнеров);

-         в качестве первичной скорости принять значение 50,688 Мбит/с, установить период следования циклов равным 125 мкс, принять структуру цикла, состоящую из трех строк по 264 столбца. Такие параметры позволили продолжить американскую ветвь ПЦИ (1,5 – 6 – 45 Мбит/с);

-         включить в иерархию достаточное число уровней сигналов;

-         ориентироваться на использование оптического волокна в качестве среды распространения сигнала.

В 1984-86 гг., рассмотрев ряд альтернатив, комитет Т1 (США) предложил использовать поток со скоростью 50,688 Мбит/с в качестве основного синхронного транспортного сигнала (STS-1). Однако впоследствии комитет SONET принял решение разработать синхронную цифровую иерархию, в которой скорость первичного сигнала была равна 51,84 Мбит/с. При этом была учтена неудача применения кросс-мультиплексирования PDH-иерархий, а также принято во внимание наличие европейского варианта SDH, в котором скорость синхронного транспортного модуля первого уровня (STM-1) составляла 155,52 Мбит/с. В результате появилась возможность путем разработки развитых схем мультиплексирования и кросс-мультиплексирования предложить универсальный набор виртуальных контейнеров (VC), позволивших инкапсулировать все форматы циклов стандартных американской и европейской плезиохронных иерархий. Таким образом, скорость сигнала STM-1 стала равна скорости сигнала ОС-3 системы SONET.

В 1989 г. в Синей книге МККТТ были изложены основные стандарты синхронной цифровой иерархии (рекомендации G.707 – G.709). Аналогичные стандарты для сетей SONET были выпущены ANSI и Bellcore.

Первоначальная редакция стандартов SDH допускала очень большое число вариантов мультиплексирования при формировании сигнала STM-1. Однако уже во второй редакции (1991 г.) некоторые варианты были отменены. В частности, из числа стандартных поддерживаемых компонентных потоков был исключен вторичный цифровой поток европейской ПЦИ (8448 кбит/с). В результате схема мультиплексирования была значительно упрощена. В 1993 году была выпущена третья редакция стандартов [10].

Технология синхронной цифровой иерархии показала свою жизнеспособность и непрерывно совершенствовалась. Она нашла свое применение не только на волоконно-оптических линиях связи, но и на радиорелейных линиях. Со временем выяснилось, что скорость 155520 кбит/с (скорость синхронного транспортного модуля первого уровня) во многих случаях является избыточной. Появилась потребность продолжить ряд стандартных скоростей не только в сторону увеличения, но и в сторону уменьшения, сохранив при этом все достоинства технологии SDH. В результате в 1999 г. была принята очередная редакция рекомендации G.708, в которой в общую схему мультиплексирования был включен сигнал STM-0 (51,84 Мбит/с, соответствует сигналу первого уровня сети SONET), а также сигналы «суб-STM» sSTM-2n и sSTM-1k (k=1, 2, 4, 8, 16; n=1, 2, 4). Таким образом, появилась возможность передавать даже одиночный виртуальный контейнер VC-12 (содержащий один поток 2 Мбит/с) с возможностью сквозного контроля и управления в пределах всей сети.

Набор стандартных контейнеров для отображения полезной нагрузки до некоторой степени ограничивал множество компонентных сигналов, которые можно было передавать по сети SDH. Между тем, хотя технология разрабатывалась в первую очередь в расчете на передачу сигналов плезиохронных иерархий, существовала потребность в передаче и других видов сигналов (например, ячеек ATM, трафика компьютерных сетей и т. п.) Чтобы сделать технологию SDH действительно универсальной, были разработаны методы смежной и виртуальной конкатенации (объединения) виртуальных контейнеров. Конкатенированные виртуальные контейнеры VC-n-Xc образуют тракты со скоростью, в X раз превышающей скорость одиночных виртуальных контейнеров VC-n [12].

В настоящее время SDH является самой распространенной технологией транспортной сети. Производителями телекоммуникационного оборудования выпускается огромное число наименований аппаратуры синхронной цифровой иерархии. Можно сказать, что SDH – это сегодняшний день транспортных сетей. Большой потенциал технологии, наличие путей ее дальнейшего совершенствования в соответствии с требованиями времени позволяют предположить, что синхронная иерархия, скорее всего, в ближайшие годы будет сохранять лидирующее положение.

На сегодняшний день существует оборудование SDH, позволяющее передавать сигналы со скоростями вплоть до 40 Гбит/с (STM-256). Такие скорости вполне удовлетворяют сегодняшние потребности в пропускной способности, а в большинстве случаев даже оказываются избыточными. Дальнейшее увеличение скорости цифрового сигнала сопряжено с серьезными техническими трудностями и экономически нецелесообразно.

Однако успехи оптоволоконной технологии позволили значительно повысить эффективность использования линий оптического кабеля за счет передачи цифровых потоков одновременно на нескольких оптических несущих. Эта технология получила название WDM (Wave Division Multiplexing), то есть разделение по длинам волн, или спектральное уплотнение.

5     Мультиплексирование с разделением по длинам волн. Оптические транспортные сети

Рост потребностей в увеличении объемов связи как с точки зрения увеличения скорости передачи информации, так и охвата новых регионов привел к появлению и становлению новых волоконно-оптических технологий, в частности технологий спектрального (частотного) мультиплексирования (уплотнения) каналов, получивших название WDM- и DWDM-технологий. Эти технологии позволяют в сотни раз увеличить пропускную способность волоконно-оптических каналов и сетей связи; их применение, вместе с технологиями временного уплотнения (TDM), позволило достичь терабитных скоростей передачи информации по одному оптическому волокну.

Повышать пропускную способность оптического волокна в уже проложенном кабеле в принципе можно двумя способами: либо повысить скорость передачи в канале за счет применения более быстрого временного уплотнения (TDM), либо увеличить число спектральных каналов, по которым осуществляется передача сигнала по одному волокну за счет применения WDM-технологии.

Реализация первого варианта, особенно в сетях дальней связи, использующих синхронную цифровую иерархию (SONET/SDH), связана с рядом трудностей. В настоящее время на практике реализованы и используются TDM-каналы со скоростями передачи информации до 40 Гбит/с, однако дальнейшее увеличение скоростей технически труднодостижимо и приводит к резкому удорожанию оконечной аппаратуры.

Кроме этого, в большинстве случаев уже проложенное оптическое волокно не позволяет передавать информацию со скоростями более 10 Гбит/с, поскольку при его прокладке в составе волоконного кабеля не принимался во внимание ряд существенных эффектов, проявляющихся в волокне при таких скоростях передачи информации. Во первых, из-за наличия дисперсии в волокне, которая приводит к уширению световых импульсов и, следовательно, к ограничению скорости передачи информации. В одномодовом волокне полная дисперсия состоит из хроматической и поляризационно-модовой (ПМД). Величину хроматической дисперсии в принципе можно снизить путем включения в линию отрезков волокна с противоположным знаком дисперсии. Величина ПМД обусловлена отклонениями поперечного сечения световедущей жилы волокна от круглой формы, возникающими из-за несовершенств технологии, и носит случайный характер, а поэтому и не всегда может быть скомпенсирована. Во вторых, с ростом скорости передачи падает чувствительность фотоприемных устройств и глубина модуляции несущего светового сигнала информационным сигналом и, как следствие этого, отношение сигнал/шум в линии. Для компенсации этих эффектов необходимо устанавливать дополнительные усилители и регенераторы оптических сигналов. Все это так или иначе приводит к усложнению оптической аппаратуры и повышению ее стоимости.

Страницы: 1, 2, 3, 4, 5



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать