История возникновения радио и радиолокации

Дело в том, что атмосферные помехи на длинных волнах в летние месяцы возрастали настолько, что любое увеличение мощности передающей радиостанции все же не могло обеспе­чить достаточную скорость передачи и надежность связи на больших расстояниях.

С ростом радиотелеграфного обмена оказалось необходи­мым увеличивать число радиостанций, обслуживающих дан­ное направление связи, хотя диапазон длинных волн чрезвы­чайно тесен: без взаимных помех в нем могут одновременно работать не более 20 мощных радиостанций во всем мире. Эти радиостанции давно уже работали, и положение казалось безвыходным.

В 20-х годах опыты радиолюбителей по связи через Атлан­тику на волнах забытого после Попова диапазона (около 1100 м) дали успешные результаты. Атмосферные помехи на таких коротких волнах почти не замечались, и связь осуще­ствлялась при очень небольшой мощности передатчиков (де­сятки ватт). Правда, на этих волнах наблюдались быстрые колебания силы приема (замирания) и не обеспечивалась круглосуточная связь. Тем не менее, эти совершенно неожидан­ные результаты были примечательны.

Опыты, проведенные в Нижегородской лаборатории в 922—1924 годах, показали, что передатчик небольшой мощ­ности 50—100 Ватт, работающий на волне порядка 100 м на антенну в виде вертикального провода Попова, может обеспе­чивать уверенную связь в течение почти всей ночи на расстоя­нии 2—3 тыс. км. Оказалось также, что по мере увеличения расстояния надо уменьшать длину волны.

Изучая особенности коротких волн, М. А. Бонч-Бруевнч с 1923 года последовательно переходил ко все более корот­ким волнам. По мере укорочения волн он обнаружил «мерт­вую зону», то есть область отсутствия приема на некотором расстоянии от передающей станции. За этой зоной начиналась область уверенного приема, простирающаяся на огромные расстояния. Далее оказалось, что очень короткие волны (по­рядка 20 м и еще короче) совсем не были слышны в Таш­кенте и Томске ночью, но обеспечивали совершенно надежную связь с этими городами днем. Это открытие позволяло утверж­дать, что короткие волны от 100 до 15 м практически обеспе­чивают дальнюю радиосвязь в любое время суток и любое время года. Более длинные волны коротковолнового диапазо­на хорошо распространяются зимой и ночью, волны короче — летом, ночью; примерно от 25 м начинаются так называемые дневные волны. Следовательно, 2—3 коротких волны могут обеспечивать практически круглосуточную связь на любое расстояние.                             Рис. 4. Два пути выбора длин воли для дальней радиосвязи.

Так советские радиотехники решили проблему организации дальней радиосвязи практически на любое расстояние совер­шенно оригинальным способом.

В середине 1926 года и фирма Маркони объявила о своих работах в области коротких волн.

Успехи направленных коротковолновых связей в СССР и Англии побудили и другие страны перейти к коротким волнам. Во многих странах началось строительство мощных коротко­волновых станций для круглосуточной дальней радиосвязи. Благодаря экономичности и уверенности этих связей возросло государственное значение радиосвязи вообще.

Основные недостатки радиосвязи, обнаруженные еще А. С. Поповым, — атмосферные помехи и замирания сигнала, хотя и получили теоретическое объяснение, но не уменьши­лись. Наоборот, с ростом числа радиостанций появились еще и взаимные помехи станций друг другу. Объединение с про­водной связью потребовало от радиосвязи такой же высокой надежности при составлении комбинированных каналов свя­зи, какой обладала связь по проволоке.

Для повышения надежности радиосвязи, особенно после второй мировой войны, применялись многие меры повышения помехозащиты: выбор длин волн с учетом времени дня и года, составление так называемых «радиопрогнозов», прием на не­сколько разнесенных антенн, специальные методы передачи сигналов и др.

Работы академиков А. Н. Колмогорова и В. А. Котельникова заложили теоретические основания помехоустойчивости радиосвязи. В шестидесятых годах был разработан еще один метод: преобразование сигналов в такую форму, в которой они сохраняют свой вид, несмотря на отдельные искажения поме­хами (так называемое помехозащитное кодирование). Создан­ные трудами многих ученых теоретические работы в этой об­ласти выливаются сейчас в новую науку — теорию информа­ции, которая рассматривает общие законы приема и передачи сигналов.

Современные радиостанции работают в общей системе электросвязи, пользуясь аппаратами Бодо, СТ-65 и др., и ве­дут многократную передачу. По каналам радиомагистрали Москва — Хабаровск обмен производится со скоростью свы­ше двух тысяч слов в минуту, причем и такая скорость не яв­ляется предельной.

Комбинированная электросвязь потребовала использова­ния коротковолновой техники и для радиотелефонной маги­стральной связи. С 1929 года началось внедрение в радио методов проводной дальней телефонной связи, прошедшее тот же сложный процесс борьбы с помехами и неустойчивостью. Появились многочисленные приборы для автоматической регу­лировки уровня модуляции, для заглушения приема во время пауз речи, уравнения звуков гласных и согласных, способы зашифровки речи как средства защиты от подслушивания и т. д. Все эти способы решают задачу лишь вчерне, но все же они позволили связать радиотелефонной связью Москву со всеми центрами в России и за границей, а также все континен­ты и государства.

При широчайшем развитии устройств для объединения радио с проводной связью сами передающие и приемные при­боры подверглись очень существенным, но не принципиаль­ным изменениям. В середине века в радиопередаче применялись только мно­гокаскадные, стабилизированные по частоте передатчики с лампами, охлаждаемыми водой или воздухом под большим давлением. Такие лампы со времен Нижегородской лабора­тории сохранили без изменения свои основные черты, но, ко­нечно, за это время значительно улучшились их эксплуата­ционные качества. То же самое происходит с приемниками: сложная схема супергетеродина, подвергается непринципиальным изменениям, повышающим эксплуатационную надежность.


Виды радиосвязи

 

От очень коротких волн (сантиметровых и дециметровых), с которыми вел свои исследования Герц и проводил первые опыты радиосвязи А. С. Попов, практическая радиотехника перешла к длинным волнам, затем к коротким, а после второй мировой войны вновь возвращается к очень коротким волнам.

В диапазоне от 100 до 3000 м разместились радиовеща­тельные станции и специальные службы (морские, аэронави­гационные и т. п.). Волны длиннее 3 км, идущие со сто­роны самых длинных волн (от 50 км), в настоящее время использует важнейшая область связи — проводная высоко­частотная связь (ВЧ связь). Такая связь осуществляется путем подключения группы маломощных длинноволновых пере­датчиков, настроенных на разные волны с промежутками между ними в 3—4 тыс. герц, к обычным телефонным прово­дам. Токи высокой частоты, создан­ные этими передатчиками, распространяются вдоль проводов, оказывая очень слабое воздействие на радиоприемники, не связанные с этими проводами, и обеспечивая в то же время хороший, свободный от многих помех прием на специальных приемниках, присоединенных к этим проводам.

В СССР такая ВЧ связь получила развитие в работах В. И. Коваленкова, Н, А. Баева, Г. В. Добровольского и др. Перед Отечественной войной начала работать длиннейшая и мире магистраль ВЧ связи Мо­сква— Хабаровск, позволившая вести три разговора по од­ной паре проводов. Впоследствии появились 12-канальныв системы, занявшие верхнюю часть «длинноволновой» области (до 100 тыс. герц) радиоспектра. ВЧ связь дала возможность осуществлять междугороднюю и международную связь с вызовом абонента из любого города любой страны, пользуясь наборным диском автоматического телефона.

После второй мировой войны стала быстро развиваться новая область высокочастотной связи, также многоканальная, использующая другой конец электромагнитного спектра — об­ласть ультракоротких волн. Б. А. Введенский уже в 1928 году вывел основные законы их распространения. По мере разработки ламп, при­годных для возбуждения и приема УКВ (магнетроны, клист­роны, лампы бегущей волны) шло постепенное укорачивание длин волн вплоть до сантиметровых. Очень короткие (санти­метровые) волны позволяют осуществлять остронаправленные антенны при сравнительно небольших размерах.

Вся эта техника использовалась главным образом со времени Великой Отечественной войны. Длительное время господствовало   представление,    будто   дальность распространения метровых,   дециметровых   и сантиметровых волн ограничена прямой видимостью  и что станции, работаю­щие на таких волнах, даже при очень малой мощности, обеспечивают большую силу сигналов лишь до горизонта. Из теории также следовало, что плотность электронов в ближней тропосфере и высшей газовой оболочке земли — ионо­сфере, недостаточна для отражения этих волн к земле и они должны уходить в космическое пространство. Это же под­тверждала и новая наука — радиоастрономия, по данным ко­торой земная атмосфера, регулярно «прозрачна» для УКВ и сверхкоротких радиоволн и нерегулярно «прозрачна» для волн длиннее 10—30 м. Тем не менее наблюдались отдельные слу­чаи приема ультракоротковолновых передач на очень далеких расстояниях. Хотя эти случаи было принято относить к событиям анормальным, они все же требовали объяснения.

В 50-х годах было высказано предположение о возможно­сти появления в ионосфере местных образований — «облаков» с высокой плотностью электронов, которые могут вызывать частичное рассеяние падающих на них сверхкоротких волн. Причем такие рассеянные волны могут обладать достаточной энергией для обнаружения их очень чувствительным прием­ником. Опыты с большими направленными антеннами на при­еме и передаче при значительной мощности излучения показа­ли, что если основные лучи, фокусируемые такими антеннами, пересекаются на высоте 10 или 100 км, то действительно про­исходит дальняя передача на 200—300 км в первом случае (тропосферное рассеяние), и до 2 тыс. км по втором случае (ионосферное рассеяние). Выяснилось также, что в указанных условиях, несмотря на большие колебания силы приема, сиг­налы оказываются все же достаточно надежными и обеспечи­вают круглосуточную регистрацию.

Уже после того, как дальние связи на сверхкоротких вол­нах вошли в практику, оказалось, что приведенное выше объ­яснение не всегда справедливо. Вскоре было предложено и другое объяснение: метеориты, падающие в большом количе­стве (10—1000 в час), ионизируют земную атмосферу на не­сколько секунд, а иногда и минут. В эти короткие отрезки времени резко увеличивается сила приема сигналов, а если мощность передатчика велика, то падение даже маленьких, но многочисленных метеоритов дает сплошное отражение радио­волн, которое может обеспечить дальний прием, в особенности ночью.

Страницы: 1, 2, 3, 4, 5



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать