Наиболее простыми по структуре среди интегрирующих преобразователей являются АЦП с преобразованием напряжения в частоту, построенные на базе интегрирующего усилителя и аналогового компаратора. Погрешность их преобразования определяется нестабильностью порога срабатывания компаратора и постоянной времени интегратора. Более высокими метрологическими характеристиками обладают АЦП, реализованные по принципу двойного интегрирования (например, ИМС, 11-разрядного АЦП К572ПВ2), поскольку при этом практически удается исключить влияние на погрешность преобразования нестабильности порога срабатывания компаратора и постоянной времени интегратора.
Анализ описанных методов преобразования и структурных схем АЦП позволяет сделать вывод, что наибольшим быстродействием обладают АЦП прямого преобразования, однако их разрядность невысока. АЦП поразрядного уравновешивания, обладая средним быстродействием, дают возможность получить достаточно высокую разрешающую способность. Но помехозащищенность тех и других преобразователей невысока. АЦП интегрирующего типа, обладая наименьшим быстродействием, обеспечивают наибольшую помехозащищенность и точность преобразования.
2. Характеристики ИМС АЦП
Основными параметрами, характеризующими ИМС АЦП, являются разрешающая способность, нелинейность, коэффициент преобразования, погрешность полной шкалы, смещение нуля, абсолютная погрешность, дифференциальная нелинейность, монотонность, время преобразования.
Разрешающая способность определяется числом дискретных значений выходного сигнала преобразователя, составляющих его предел преобразования. Чем больше число дискретных значений, тем выше разрешающая способность преобразователя. Двоичный m-разрядный преобразователь имеет 2m дискретных значений, а его разрешающая способность равна 1/2m. В преобразователях различают наименьший и наибольший значащие разряды. В двоичной системе кодирования наименьший значащий разряд — это разряд, имеющий наименьший вес. Вес младшего разряда определяет разрешающую способность. Наибольший значащий разряд соответствует наибольшему весу. В двоичной системе кодирования наибольший значащий разряд имеет вес 1/2 номинального значения максимально возможного выходного сигнала при всех включенных разрядах (полной шкалы преобразования).
Разрешающая способность характеризует как ЦАП, так и АЦП и может выражаться либо в процентах, либо в долях полной шкалы. Например, 12-разрядный АЦП имеет разрешающую способность 1/4096, или 0,0245% от значения полной шкалы. Преобразователь с полной шкалой напряжения 10 В может обеспечивать изменение выходного кода на единицу при изменении входного напряжения на 2,45 мВ. Аналогично 12-разрядный ЦАП дает изменение выходного напряжения на 0,0245% от значения полной 'шкалы при изменении двоичного входного кода на один двоичный разряд. Разрешающая способность является скорее расчетным параметром, а не технической характеристикой, поскольку она не определяет ни точность, ни линейность преобразователя.
Нелинейность dн, или интегральная нелинейность, характеризуется отклонением dн(х) реальной характеристики преобразователя fp(x) от прямой. При этом значение dн(х) зависит от метода линеаризации. Рис. 2,а иллюстрирует способ линеаризации, когда линеаризующая прямая проходит через крайние точки реальной характеристики ЦАП. При этом наблюдается максимальная погрешность линейности (нелинейность dн). На рис. 2,б прямая проводится таким образом, что максимальное отклонение fp(x) от прямой получается в два раза меньше. Однако для этого необходимо знать характер реальной характеристики ЦАП, что очень 'сложно обеспечить в серийном производстве. Поэтому, как правило, погрешность линейности определяют при прохождении линеаризующей прямой через крайние точки характеристики fp (х). Для определения нелинейности (которая обычно выражается в процентах от полной шкалы или в долях единицы младшего разряда) необходимо знать аналитическую зависимость между выходным аналоговым сигналом ЦАП и его цифровым входом. Для ЦАП с двоичными т-разрядами аналоговый выход Uвых зависит от входного двоичного кода в идеальном случае (в отсутствие погрешностей преобразования) таким образом:
Uвых = Uоп(B12-1+B22-2+…+ Bm2-m), (1)
где B1, B2, ..., Bm—коэффициенты двоичного числа, имеющие значение единицы или нуля (что соответствует включению или выключению разряда); Uon—опорное напряжение ЦАП. Так как
то выходное напряжение ЦАП при всех включенных разрядах (B1, B2, ..., Bm = 1) определяется соотношением
(2)
Таким образом, при включении всех разрядов выходное напряжение ЦАП, равное напряжению полной шкалы Uп.ш, отличается от опорного напряжения Uоп на значение младшего разряда преобразователя Δ:
(3)
При включении i-ro разряда выходное напряжение ЦАП
Uвых=Uоп2-i (4)
Выражение (1) показывает линейную зависимость между аналоговым выходом и цифровым входом преобразователя. Следовательно, сумма аналоговых выходных величин, полученная для любой комбинации разрядов, действующих независимо, должна быть равна аналоговому сигналу, который получается при одновременном включении всех разрядов этой комбинации.
Это является основой простого и эффективного контроля нелинейности: включаются различные комбинации разрядов и регистрируется соответствующий аналоговый сигнал. Затем каждый разряд этой комбинации включается отдельно и записывается соответствующее ему значение выходного напряжения. Алгебраическая сумма этих значений сравнивается с суммой, получаемой для всех разрядов выбранной комбинации, включённых одновременно. Разность сумм и будет погрешностью линейности для данной точки выходной характеристики преобразователя. Наихудшим случаем для погрешности линейности является включение всех разрядов, поскольку при этом погрешность определяется суммой погрешностей всех разрядов.
Преобразователь считается линейным, если его максимальная погрешность линейности δn не превышает 1/2 значения младшего разряда Δ. Оценку линейности АЦП проводят так же, как и для ЦАП.
Таким образом, нелинейность характеризует как ЦАП, так и АЦП и наряду с дифференциальной нелинейностью имеет первостепенное значение для оценки качества преобразователей, поскольку все другие погрешности (смещение нуля, погрешность полной шкалы и т. д.) могут быть сведены к нулю соответствующими регулировками.
Коэффициент преобразования Кпр определяет наклон характеристики преобразователя. Как отмечалось, для идеального ЦАП наклон характеристики должен быть таким, чтобы при включении всех разрядов (двоичный код полной шкалы No на его цифровых входах равен 111...1) выходное напряжение полной шкалы Uп.ш ЦАП было меньше опорного напряжения Uоп на значение младшего разряда Δ, что соответствует прямой 1 на рис. 3 [соотношение (2)]. Для ЦАП с токовым выходом наклон характеристики определяется номиналом резистора обратной связи Roc (Рис. 4), который находится в составе преобразователя и предназначен для включения в цепь обратной связи усилителя-преобразователя тока в напряжение. При номинальном значении Rос напряжение Un.ш отличается от Uon на значение младшего разряда Δ. Если номинал Roc больше, то коэффициент преобразования возрастает (прямая 3 на рис. 3), если меньше,—то уменьшается (прямая 2 на рис 3). Это объясняется тем, что абсолютные значения младшего разряда Δ2 и Δ3 для характеристик 2 и 3 рис. 3 отличаются от расчетного номинального значения Δ1, определяемого соотношением (3). При этом фактические значения младших разрядов преобразования определяются соотношением
Δф=Uп.ш.ф./(2m-1)
где Uп.ш.ф.—фактическое значение полной шкалы преобразователя.
Погрешность полной шкалы δп.ш отражает степень отклонения реального коэффициента преобразования от расчетного, т. е. под δп.ш понимают разность между номинальным значением полной шкалы преобразователя Uп.ш.н, определяемым соотношением (2), и его фактическим значением Uп.ш.ф. Таким образом, для ЦАП
де Δн и Δф — номинальное и фактическое значения единицы младшего разряда преобразователя.
Относительная погрешность полной шкалы определяется выражением
и, следовательно, не зависит от коэффициента преобразования ЦАП.
Погрешность полной шкалы АЦП характеризуется отклонением действительного входного напряжения от его расчетного значения для полной шкалы выходного кода. Она может быть обусловлена погрешностями опорного напряжения Uoп, многозвенного резистивного делителя, коэффициента усиления усилителя и т. д. Погрешность шкалы может быть скорректирована с помощью регулирования коэффициента усиления выходного усилителя или опорного напряжения.
Смещение нуля (погрешность нуля) равно выходному напряжению ЦАП при нулевом входном коде или среднему значению входного напряжения АЦП, необходимому для получения нулевого кода на его выходе. Смещение нуля вызвано током утечки через разрядные ключи ЦАП,
напряжением смещения выходного усилителя либо компаратора. Данную погрешность можно скомпенсировать с помощью внешней по отношению к ЦАП или АЦП регулировки нулевого смещения. Погрешность нуля δ0 может быть выражена в процентах от полной шкалы или в долях младшего разряда. Следует отметить, что погрешность полной шкалы определяют с учетом смещения нуля характеристики преобразователя, в то время как при определении погрешности линейности линеаризующая прямая должна проходить через начало реальной функции преобразования fр(х), т. е. смещение нуля δ0 необходимо корректировать, чтобы не внести погрешность в измерение линейности, поскольку она суммируется всякий раз при считывании выходного сигнала. Действительно, для ЦАП справедливо неравенство
Uвых(B1+B2+…+Bm)+δ0≠UвыхB1+ UвыхB2+…+ UвыхBm+mδ0
в левой части которого погрешность нуля 6о суммируется один раз (все разряды включены), а в правой—т раз (m отдельных считываний выходного сигнала ЦАП). При этом погрешность измерения нелинейности будет меньше, если смещение нуля 6о запоминается и вычитается из напряжения каждого последующего считываемого разряда до того, как будет произведено определение нелинейности.