Изучение режимов работы диодов и транзисторов в электронных схемах
4. Отснять нагрузочные характеристики выпрямителя и определить его выходное сопротивление.

5. Подключить к выпрямителю параметрический стабилизатор, снять нагрузочную характеристику стабилизатора и определить по ней его выходное сопротивление, определить коэффициент стабилизации (схема выпрямителя мостовая, фильтр LC отключен).

kонтрольные вопросы

1. Как работают однополупериодный и двухполупериодный мостовой выпрямители?'

2. Каковы основные параметры выпрямителей?

3. На чем основана работа  LC -фильтра и что такое коэффициент сглаживания?

4. Как определяется коэффициент стабилизации стабилизатора?

5. Что такое угол отсечки и как его измерить?

6. Что такое нагрузочная характеристика, как она снимается и какие параметры можно по ней определить?

7. Объясните работу параметрического стабилизатора.

8. В чем отличие работы диода в однополупериодной и двух-полупериодной мостовой схемах?

9. Чему равен угол отсечки при коротком замыкании нагрузки и при холостом ходе?

Литература

1.Иванов-Цаганов А.И. Электротехнические устройства радио-систем: Учеб. для студентов радиотехн. спец. вузов. - 3-е изд., перераб. и доп. - М.: Высшая школа, 1984.- 280 о., илл.

2. Вересов Г.П. Электропитание бытовой радиоэлектронной аппаратуры. - М.: Радио и связь, 1983. - 128 с., ил.

Работа № 2. ТРИ Схемы ВКлючения ТРАНзистора

Цель работы - изучить, как влияют различные способы включения биполярного транзистора и величина сопротивления нагрузки на свойства усилительного каскада,

Продолжительность работы - 3,5 часа.

Теоретическая часть

В транзисторных схемах источник сигнала может включаться в цепь базы или  эмиттера, нагрузка - в цепь коллектора или эмиттера, а третий электрод транзистора оказывается общим для входной и выходной цепи. В зависимости от того, какой электрод транзистора оказывается общим, различают схемы ОЭ (о общим эмиттером), ОБ (с общей базой) и ОК (с общим коллектором), показанные на рис. 7.

В этих схемах конденсаторы С1 и С2 служат для связи каскада с источником сигнала и нагрузкой на переменном токе и исключают  в то же время влияние источника сигнала и нагрузки на режим работы каскада по постоянному току. Резисторы R1, R2, Rк и обеспечивают выбранный режим работы транзистора в активной области, т.е. выбранное положение рабочей точки на вольт-амперных характеристиках транзистора. Конденсатор СЗ выполняет роль блокировочного конденсатора, исключая из работы на переменном токе резистор (каскад ОЭ) или делитель напряжения в цепи базы R1, R2 (каскад ОБ), и тем самым обеспечивает присоединение эмиттера(базы) к общей точке схемы.


Для анализа транзисторных схем важно знать, как связаны электродные тока и напряжения между выводами транзистора, т.е. знать вольт-амперные характеристики.

При анализе каскада ОЭ удобно пользоваться зависимостями =f1(Uбэ, Uкэ) и Iк=f2(Uкэ,Iб). Первые из них называются семейством входных, а вторые - семейством выходных характеристик. Их типичный вид приведен на рис. 8. Здесь же приведена построенная нагрузочная прямая по постоянному току и выбранная на ней рабочая точка транзистора А с координатами IкА,  UкэА, Iб  , которая отображена также на семействе входных характеристик и имеет координаторы IбА, (UбэА, IкэА). Для построенной нагрузочной прямой Iк=(Ек-Uкэ)/(Rк+Rэ) (рис.8а) транзистop будет работать в активном режиме при токах базы в диапазоне Iк0 - IбН.

В усилительных схемах транзистор работает в активном режиме когда эмиттерный переход смещен прямо (для р-п-р-транзистора Uбэ>0), а коллекторный - обратно (Uбк>0) . При этом транзистор обладает усилительными свойствами и токи его электродов связаны между собой через статические коэффициенты передачи по току транзистора В и a

В= Iк /Iб ,    В+1= Iэ /Iб,             a= Iк /Iэ

откуда следует, что В=a/(1-a), a=В/В+1.

 

Рис. 8 . Статические вольт-амперные характеристики транзистора: а)  выходные, б)  входные.

Для оценки параметров усилителя его принципиальную схему преобразуют в эквивалентную, в которой транзистор замещается своей малосигнальной эквивалентной схемой рис. 9.

Нас интересуют формулы для кu, кi, кp, Rвх и Rвых в диапазоне средних частот. На этих частотах можно не учитывать частотную зависимость коэффициента передачи по току и емкость Скэ(она отбрасывается). Емкости конденсаторов CI, C2 и СЗ выбирают настолько большими, чтобы на средних частотах их сопротивление было пренебрежимо малым по сравнению с суммарным сопротивлением окружающих их резисторов. Поэтому в эквивалентной схеме на рис.10 они представлены коротко- замкнутыми ветвями. То же относится и к источнику питания Ек, так как схема на рис.10 справедлива только для переменных составляющих токов и напряжений. С учетом сказанного резисторы R1 и R2, так же как и резисторы и RH (RH - нагрузка, подключается к выходным клеммам усилителя), оказываются соединенными параллельно. Поэтому в эквивалентной схеме фигурируют Rб = R1||R2 и RkH = Rk||RH. Аналогично можно получить эквивалентные схемы для каскадов ОБ и ОК. Применяя к эквивалентным схемам каскадов известные методы анализа электрических цепей (например, метод контурных токов), можно получить приближенные формулы для оценки основных параметров усилительных каскадов, представленные в таблице. В этих формулах

RЭH = RЭ||RH Rвх троэ = rf + rЭ (B+1), где rЭ=26 мВ/IЭА, R'=RrRб/( Rr+Rб),  а Rr- внутреннее сопротивление источника сигнала. Для всех схем кр=кi.

Верхняя граничная частота полосы пропускания (на этой частоте Uвых в  раз меньше, чем на средней частоте) транзисторного каскада зависит от параметров транзистора fh21б, B, Cк, rб и, нагрузки RH,CH , внутреннего сопротивления источника сигнала Rr и схемы включения транзистора. Дkя любого усилительного каскада fв=(2ptв)-1 где tв=G(tв+CкэH)+CHRкH. В последней формуле tв=(B+1)/ 2p fh21б, Cкэ=Cк(B+1), а коэффициент G для каждой схемы включения транзистора вычисляют по формулам таблицы.

Описание макета

Исследуемая в работе схема представлена на рис. II. С помощью переключателей, расположенных на передней панели лабораторной установки, можно путем соответствующей коммутации эмиттерной, базовой и коллекторной цепей транзистора собрать любой из трех усилительных каскадов (ОЭ, ОБ или ОК).

Для оценки входного тока усилителя служат измерительные резисторы R1(ОЭ, ОК) и R6(ОБ). При этом iвх=(Uг-Uвх)/Rизм, где . - напряжение на клеммах генератора, Uвх  напряжение на входе усилителя (за измерительным резистором).

При опенке выходного сопротивления усилителя

Rвых =Uвых xx/iвых кз будем считать, что холостой ход на выходе усилителя возникает, если установить RH=RHмакс, а режим короткого замыкания – при RH=RHмин, так как других возможностей данная лабораторная установка не предоставляет.

Рис. II. Схема макета лабораторной работы № 2

Питание усилительного каскада осуществляется от источника G1, напряжение на выходе которого устанавливают 10 В.

В исследуемой схеме стоит маломощный низкочастотный транзистор МП42А ( fh21б = 1¸3 мГц, В= 30¸50, rб= 200 Ом, Ск = 30 пФ, Ркмакс =200 мВт). Резисторы и конденсаторы имеют следующие номиналы: R1=1 кОм, R2=11 кОм, R3=5.1 кОм, R4=R5=R9=3.6 кОм, R6=470 Ом, R7=20 Ом, R8=510 Ом, R10=10 кОм, С1=С2=С3=20 мкф.

Задание

Подготовить к работе генератор стандартных сигналов (ГСС) и милливольтметр переменного тока с большим входным сопротивлением. Ознакомившись с назначением органов управления лабораторной установки и присоединив к ней измерительные приборы, подключить установку к сети переменного тока.

1. Подавая на вход схемы синусоидальный сигнал с частотой fc=2кГц (средняя частота для усилителя) и напряжением Uг = 35 мВ, для каждого из усилительных каскадов ОЭ, ОБ, ОК провести экспериментальную оценку малосигнальных параметров каскада Rвх, кi, кu, кр, Rвых различных сопротивлениях нагрузки . Построить зависимости параметров усилителя от .

2. Используя формулы таблицы, оценить те же параметры усилителя и вычислить относительное расхождение между экспериментальными и аналитическими результатами.

3. Пользуясь экспериментальными данными определить, какой каскад и при каких   обладает наибольшим усилением по мощности. Объясните почему?

4. Дать заключение, как соотносятся между собой у различных каскадов кi, кu, Rвх , Rвых.  Объясните полученные результаты.

5. Экспериментально определить верхнюю граничную частоту для каждого из каскадов ОЭ, ОБ и ОК при = R10 . Напряжение на выходе ГСС поддерживать неизменным на всех частотах и равным 35 мВ.

6. Рассчитать fв для каждого каскада и сопоставить расчетные и экспериментально полученные значения между собой.

Контрольные вопросы

1. Какова малосигнальная эквивалентная схема транзистора, транзисторных каскадов ОЭ, ОБ, ОК?

2. Чем отличаются между собой усилительные каскады ОЭ, ОБ, ОК (схемные различия, различия в параметрах и характеристиках)?

3. Как измерить входное и выходное сопротивления усилителя, усиление по напряжению, току, мощности?

4. Объясните, почему возникают искажения в транзисторных каскадах? Какова природа возникающих искажений?

5. Дайте определение граничной частоты усилителя.

Литература

1. В.Г.Гусев, Ю.М.Гусев. Электроника. - М.: Высшая школа,1982. - С. I62-I78.

2. Е.И.Манаев. Основы радиоэлектроники. - М.: Радио  и связь, 1985. - С. 95-100, I30-I32.

Работа № 3. ключевой РЕжим РАБОТЫ ТРАНЗИСТОРА

Цель работы - исследовать статические режимы и переходные процессы в схеме простого транзисторного ключа. Продолжительность работы - 3,5 часа.

Страницы: 1, 2, 3



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать