Импульсом первой ячейки распределителя триггеры устанавливаются в состояние, при котором с выходов триггеров Т1-T4 снимается 0, а с выхода триггера Ts—l. Этим сигналом переключается ключ Ks, через который подается эталонное напряжение Еэт на резистор Rs, вследствие чего на компаратор поступает наибольшее напряжение £„, составляющее в нашем случае 16 В. Эталонное Е'эт и преобразуемое и, напряжения сравниваются в компараторе: при y,>£'„ на выходе компаратора сигнал отсутствует, при ^<£„— возникает уравновешивающее напряжение С/у в виде импульса, который подается на выход и на элементы И1—И5. Такая логика работы преобразователя объясняется тем, что образуемый код может сниматься непосредственно с тех 'же выходов триггеров, с которых снимается и напряжение, подаваемое на ключи. Поэтому если, например, преобразуется код в напряжение Ux = 15 В, то, очевидно, поскольку 15< 16, триггер Ts должен быть переключен, чтобы с его выходов был снят 0, а не 1, соответствующая числу 16. Для этого на вход триггера с компаратора должна быть подана логическая 1.
Импульс с компаратора поступает на элементы И с некоторой задержкой, так что он совпадает с импульсом распределителя. Поэтому второй импульс с распределителя, совпадая по времени с сигналом управления с компаратора, пройдет через элемент И, перебросит триггер Та с 1 на 0 и одновременно переключит триггер Т4 отчего на выходе Q4 возникает сигнал 1. При этом эталонное напряжение подается через ключ К.4 и преобразуемое напряжение Us будет сравниваться с напряжением, поступающим через резистор R4 и равным 8 В.
Если Ux>Eэт, то сигнал компаратора отсутствует, триггер T5 не переключается, а распределитель в следующем такте изменяет состояние триггера T4 и на входе компаратора окажется напряжение, равное 16+ +8=24 В.
Такая последовательность операций будет повторяться до тех пор, пока преобразуемое напряжение и, не будет скомпенсировано эталонным напряжением с выхода ЦАП с точностью до младшего разряда. В конце цикла на триггерах будет зафиксирован двоичный код, цифровое значение которого пропорционально и,. :
Таким образом, выходной код можно снимать или последовательно во времени в виде обратного двоичного кода с компаратора начиная со старшего разряда, либо параллельно в виде прямого двоичного кода с триггеров. На рис. 13.15, б представлен пример преобразования измеряемого напряжения и,=21 В. Преобразование начинают со старшего разряда (как и взвешивание на весах, когда на чашу весов ставят гири начиная с наибольшей).
Сначала через резистор R5, к компаратору подключается напряжение 16 В и с выхода Qs снимается сигнал /, так как с компаратора сигнал не поступает (16<21) и триггер Fs не переключается. Импульс со второй ячейки распределителя переключает триггер Г<, в результате логическая 1 с выхода Q4 открывает ключ /<4 и подсоединяет к компаратору добавочное напряжение, равное 8 В. Поскольку требуется уравновесить оставшееся напряжение 21 — 16 ==5 В, а 8>5, с компаратора будет снят импульс, открывающий элемент И4 с приходом импульса с третьей ячейки распределителя. Поэтому импульс с элемента И^ через сборку ИЛИ переключит триггер та и Q4=0. На рис. 13.15, в показано, что сначала снимается 1, затем 0, потом опять 1, так как после выключения ключа Кз эталонное напряжение 4 В оказывается меньше оставшегося нескомпенсированным напряжения 5 В. Далее снова следует сигнал 0 (2>1) и, наконец, сигнал 1. С выходов Qs—Qi будет снят код 10101.
Основными источниками погрешностей преобразования являются декодирующая сетка сопротивлений, источник эталонного напряжения и ключи. Кроме того, точность работы преобразователя определяется чувствительностью и стабильностью компаратора.
Преобразование кодов в напряжение или ток
В качестве преобразующих устройств используются цифро-аналоговые преобразователи (ЦАП), выполненные в виде декодирующих сеток из резисторов. Для преобразования кодовой посылки в ток или напряжение необходим параллельный код. Поэтому перед преобразованием последовательный код записывается в регистр и в нужный момент со всех его ячеек снимается параллельный код. Сопротивления резисторов в декодирующей сетке выбирают так, чтобы выходное напряжение сетки было пропорционально декодируемому числу. По способу построения декодирующие' сетки подразделяют на последовательные и параллельные, а по режиму работы — с суммированием напряжений и токов.
Недостаток декодирующих сеток с последовательным соединением разрядных .резисторов заключается в том, что при включении разного числа резисторов получаются различные значения выходного сопротивления схемы, что уменьшает точность преобразования, если преобразователь работает не в режиме холостого кода, а нагружен на входное сопротивление последующего устройства. Этого недостатка лишены декодирующие сетки с параллельным включением разрядных резисторов типа R — 2R и со взвешенными резисторами.
Масштабирование
Предположим, что необходимо передать и измерить два переменных напряжения, изменяющихся в пределах Ux1=0¸220B и Ux2=0¸ 110 В. Оба эти напряжения поступают на датчики Д1 и Д2 (рис. 13.19), имеющие одинаковый выходной ток 0—5 мА. Это значит, что при поступлении напряжений на датчик Д1 220 В, а на датчик Д2 — 110 В на выходах обоих датчиков будет один и тот же ток 5 мА. Далее с помощью ключей К1 и К2 токи с датчиков поочередно поступают на аналого-цифровой преобразователь АЦП, где они преобразуются, например, в двоичный код, который
может передать 27=128 дискретных значений. Если на приемной стороне полученные коды требуется представить в виде цифрового отсчета (методы такого отсчета рассмотрены в гл. 14), то окажется, что и приемник Пр будет преобразовывать в цифры один и тот же код (от 0 до 127) и получит одни и те же абсолютные значения измеряемых величин, что не соответствует разным значениям передаваемых напряжений. Во избежание такой ошибки на приеме каждый из кодов при преобразовании его в цифры нужно умножить на масштабный коэффициент. Так, в нашем примере код, соответствующий напряжению их1, следует умножить на коэффициент 2, а код, соответствующий напряжению иx2,— на коэффициент 1. Это умножение осуществляют специальным масштабирующим устройством, обозначенным на рис. 13.19 через X М.
Таким образом, масштабирование — это умножение кодовой комбинации, выражающей измеряемую величину, на коэффициент при воспроизведении абсолютных значений измеряемой величины в цифрах.
Для цифрового воспроизведения в простейшем случае требуется получить код do. Например, для воспроизведения показаний от 0 до 100 нужны 20 ламп: 10— для отображения единиц и 10 — для отображения десятков (есть, конечно, и более совершенные методы отображения, о чем будет сказано в гл. 14). Лампа каждого разряда должна зажигаться подачей на нее соответствующего потенциала. Выбор лампы осуществляется дешифратором Дш, к которому ключом К1 или K2 поочередно подключаются измеряемые величины (рис. 13.19). Так же просто производится цифровое воспроизведение при передаче двоично-десятичным кодом.
'Для простоты реализации умножения на масштабный коэффициент стремятся применять возможно меньшее число коэффициентов. Так, умножение двоично-десятичного и единично-десятичного кодов на коэффициенты 2 и 5 осуществляют с помощью сравнительно простых декадных дешифраторов параллельного типа. Умножение на 10 или на число, кратное 10, производят простым переносом запятой.
Заметим, что масштабирование не требуется, если на приеме коды преобразуются ЦАП в аналоговые величины (ток или напряжение). Действительно, если придут два одинаковых кода, то, хотя они и будут преобразованы в одинаковые токи и затем отклонят стрелки своих приборов на одинаковые углы, показания с приборов будут сняты разные, так как шкалы каждого из них градуируют в разных значениях измеряемой величины.
Структура кодоимпульсных систем
На рис. 13.20 приведена структурная схема многоканальной кодо-импульсной системы телеизмерения. Измеряемые аналоговые величины через управляемый распределителем коммутатор поочередно поступают на АЦП, в котором преобразуются в последовательный двоичный код (если АЦП выдает параллельный код, то до кодера нужна установка схемы, преобразующей параллельный код в последовательный). В кодере двоичный код преобразуется в один из помехозащищенных кодов, который поступает в линейный блок ЛБ, где происходит формирование и усиление импульсов. В случае необходимости передача импульсов по линии связи может происходить с частотным наполнением, для чего после Л Б устанавливают модулятор и генератор частоты, а на К.П—демодулятор.
Приходящие на ПУ из линии связи, несколько искаженные из-за помех импульсы, восстанавливаются в ЛБ и поступают на декодер. Одновременно происходят синхронизация распределителей и синфазирование генераторов. После декодирования информационные символы могут поступать на блоки цифрового или аналогового воспроизведения информации или на оба сразу, а также в ЭВМ. Каждая кодовая комбинация (КК), соответствующая определенной измеряемой величине, записывается в индивидуальный регистр. При цифровом воспроизведении КК предварительно проходит через блок масштабирования. Очередность записи КК в регистры исходит от распределителя.
Перед поступлением на стрелочные приборы КК предварительно преобразуется в среднее значение тока в ЦАП. При цифровом воспроизведении измеряемой величины КК поступает сначала в дешифратор Дш, в котором возбуждается выход, соответствующий ее значению, и далее воспроизводится на индикаторе в виде цифры. Величины, поступающие на приборы и индикаторы, могут одновременно регистрироваться методами, указанными в гл. 14.
Рис. 13.20. Структурная схема кодоимпульсной системы телеизмерения:
ГТИ — генератор тактовых импульсов; ПК. — преобразователь параллельного кода в последовательный и обратно (в приемнике); ЛБ — линейный блок; ФСС— формирователь синхронизирующего сигнала; БМ — блок масштабирования; Р — регистр; Дш — дешифратор; ВСС — выделитель синхронизирующего сигнала.
Литература
1. В. Н. Тутевич «Телемеханика» Учебное пособие для вузов ВШ 1985год.