Контроль динамических параметров ЦАП

Устройство реа­лизует также стробоскопический метод измерения. При определении tуст фактически решают две самостоятель­ные задачи:

1) выделение временного интервала, пропорциональ­ного длительности измеряемого времени установления;

2) преобразование выделенного интервала в форму, удобную для обработки.












    










Рисунок 5 - Схема автоматического измерителя времени установле­ния ЦАП


Рисунок 6 - Временные диаграммы рабо­ты автоматического измерителя времени установления ЦАП


Принцип выделения временного интервала аналоги­чен рассмотренному. Установившееся значение переход­ного процесса контролируемого ЦАП совмещают с нуле­вым уровнем с помощью суммирующего усилителя СУ, ключа К и интегратора И.

В качестве устройств сравне­ния используются стробируемые компараторы напряже­ния KH1 и KH2, которые совместно со схемой ИЛИ, счет­чиками импульсов Сч1 и Сч2, триггером Т1, схемой запре­та СЗ и формирователем порогового напряжения ФПН перемещают стробирующий импульс по временной оси к началу переходного процесса. Триггер Т2 и преобразо­ватель средних значений напряжения прямоугольных им­пульсов ПСЗ обеспечивают преобразование выделенно­го временного интервала tуст в пропорциональное напря­жение постоянного тока.

Схема работает следующим образом. В исходном состоянии генератор Г заторможен и на одном из его выходов имеется напряжение, соответствующее логической «1» цифровых входов контролируемого ЦАП, а на другом — логическому «0». Многоканальный коммутатор поз­воляет сформировать произвольную комбинацию входного воздействия на цифровые входы, соответствующую любой точке характеристики контролируемого ЦАП, что обеспечивает контроль времени установления в любой точке характеристики ЦАП и при любых смежных кодовых комбинациях.

Так, например, если необходимо измерить время установления полной шкалы ЦАП, то его цифровые входы подключают к выходу генератора Г с напряжением, соответствующим логической «1».

Если требуется определить время установления ЦАП при включении, например, всех разрядов, кроме старшего, цифровой вход последнего подключают на все время измерения к шине, формирующей напряжение логического «0», входы остальных разрядов — к выходу генератора с напряжением логической «1».

В случае измерения времени установления при смене смежных кодовых комбинаций, например при смене ко­да 011...1 на 100...0, в исходном состоянии цифровой вход старшего разряда подключают к выходу генератора с на­пряжением логического «0», входы остальных разря­дов — к выходу генератора с напряжением логической «1». Следовательно, в исходном состоянии выходной сиг­нал ЦАП соответствует его установившемуся значению в проверяемой точке характеристики.

Затем замыкают ключ К.. При этом выходной сигнал ЦАП, поступая на вход интегратора И после его прохождения через сумми­рующий усилитель СУ, изменяет значение выходного на­пряжения СУ таким образом, что результирующий сигнал на выходе усилителя начинает уменьшаться.

По окончании переходного процесса установившееся значе­ние выходного сигнала ЦАП полностью компенсируется выходным сигналом интегратора и на выходе усилителя устанавливается напряжение, близкое к нулю и равное смещению нуля интегратора И. Затем ключ К размыкают и запускают генератор Г, обеспечивающий периодическую (с определенной частотой) смену кодовой комбинации на цифровых входах ЦАП. При этом происходит периодическое изменение с частотой генератора выходного сигнала ЦАП (рисунок 6 б). Поскольку в исходном состоянии установившееся значение выходного сигнала ЦАП было скомпенсировано выходным сигналом интегратора (и сигнал компенсации после размыкания ключа поддерживался интегратором постоянным), то переходный процесс выходного сигнала ЦАП (на выходе суммирующего усилителя) независимо от выбранной контролиру­емой точки и наклона характеристики ЦАП будет располагаться относительно нулевого уровня. Это позволяет при необходимости дополнительно усилить разностный сигнал вблизи установившегося значения и тем самым значительно повысить чувствительность и разрешающую способность устройства.

Выходной сигнал усилителя по­дается на входы компараторов напряжения КН1 и КН2, один из которых (с учетом коэффициента усиления СУ) имеет порог срабатывания, превышающий 0,5Δ, а дру­гой – (-1/2)Δ. Частоту генератору Г выбирают таким образом, чтобы длительность его импульсов Т/2 (рисунок 6а), формирующих кодовую комбинацию на цифро­вых входах ЦАП, превышала максимально возможное время установления.

Переходный процесс исследуют пу­тем стробирования компараторов, начиная с момента времени ti, заведомо превышающего время установле­ния, и перемещения стробирующего импульса по времен­ной оси к началу переходного процесса, т. е. справа на­лево до момента срабатывания одного из компараторов при отклонении контролируемого сигнала от установив­шегося значения более чем на (± 1/2) Δ.

Рассмотрим формирование и перемещение стробирующего импульса. Передний фронт импульса генератора Г, совпадающий с началом переходного процесса, осуще­ствляет запуск генератора пилообразного напряжения ГПН, возрастающий сигнал которого (рисунок 6б) поступает на один из входов дискриминатора уровней Д. В момент превышения пилообразным сигналом значения, поступающего на дискриминатор Д с формировате­ля порогового напряжения ФПН, дискриминатор сраба­тывает и с помощью ГСИ формирует стробирующий им­пульс.

Крутизну выходного сигнала ГПН и значение на­чального напряжения ФПН выбирают таким образом, чтобы первый стробирующий импульс был расположен на участке заведомо установившегося переходного процесса. Поэтому амплитуда напряжения исследуемого сиг­нала, поступающего на компараторы КН1 и КН2 в момент стробирующего импульса, находится в зоне (±1/2)Δ и компараторы не срабатывают. При этом счетчик импульсов Cч1 обнулен, а триггер T1 находится в исходном состоянии и обеспечивает прохождение импульсов с выхода счетчика Сч2 через схему запрета СЗ на формирователь порогового напряжения ФПН. Стробирующие импульсы с частотой повторения переходного процесса (с частотой генератора Г) заполняют предварительно обнуленный счетчик Сч2. При поступлении n-го импульса происходит переполнение этого счетчика. Импульс переполнения через схему запрета СЗ поступает на ФПН, уменьшая пороговое напряжение дискриминатора на ΔU. При крутизне 5 выходного напряжения ГПН это вызывает перемещение момента срабатывания дискриминатора (tд1, tд2 и т. д.), а следовательно, и момента формирова­ния стробирующего импульса к началу переходного про­цесса на величину:


δt = tд1 – tд2 = ΔU/S                                              (1)


После обнуления счетчика Сч2 исследуют характеристику в новой точке переходного процесса. Если и в этой точке переходный процесс находится в зоне допуска, то по окончании п повторений переходных процессов вновь происходит переполнение счетчика Сч2 и перемещение стробирующего импульса по временной оси на δt к началу переходного процесса. Перемещение будет происхо­дить до тех пор, пока переходный процесс не приблизится к границе зоны допуска (положительному или отрица­тельному значению). При этом в зависимости от полярности отклонения исследуемого сигнала от установившегося значения начинает срабатывать один из компарато­ров KH1или КН2, выходные импульсы которых поступают на счетчик Сч1.

Если срабатывание компараторов неустойчивое, нерегулярное и за n повторений переход­ных процессов число срабатываний не превышает n/2 (что возможно при воздействии на компараторы KH1, КН2 различных помех, накладываемых на исследуемый сигнал и особенно ощутимых с приближением переход­ного процесса к допустимым значениям), то переполнения счетчика Сч1 не происходит и импульс переполнения счетчика Сч2 по окончании п повторений переходного про­цесса обнуляет счетчик Сч1 и вновь перемещает стробирующий импульс на δt, обеспечивая устойчивое срабатывание одного из компараторов. Это является признаком достижения переходным процессом границы зоны допустимых значений установившегося выходного напряжения ЦАП. В этом случае число срабатываний компара­торов KH1 или KH2 до окончания очередного цикла из n повторений переходного процесса превышает n/2, что приводит к переполнению счетчика Cч1, выходной импульс которого воздействует на триггер Т1, запрещая с помощью СЗ прохождение импульса переполнения счетчика Сч2 на ФПН. По окончании цикла импульс переполнения счетчика Сч2, обнуляя счетчик Сч1, не проходит на ФПН, что сохраняет неизменным уровень срабатывания дискриминатора Д, а значит, и расположение стробирующего импульса на временной оси. Перед началом очередного цикла сканирования переходного процесса устройством управления УУ происходит обнуление счётчика Сч2 и нормализация триггера Т1. При периодическом повторении циклов сканирования устойчивое срабатывание компараторов KH1 или КН2 обеспечивает неизменное положение стробирующего импульса на временной оси, момент появления которого и является моментом окончания переходного процесса исследуемого сигнала.

Поскольку моменты запуска и нормализации триггера Т2 определяются соответственно фронтом импульсов генератора Г, совпадающим с началом переходного процесса, и стробирующим импульсом, периодическое появление которого совпадает с моментом достижения переходным процессом установившегося значения, то длительность повторяющихся с частотой генератора выходных импульсов триггера Т2 в конце измерительного цикла равна дли­тельности переходного процесса исследуемого сигнала (рисунок 6е). Длительность выходных импульсов триггера Т2 с помощью преобразователя средних значений ПСЗ преобразуется в пропорциональное напряжение постоянного тока, фиксируемое, по окончании измерительного процесса отсчетно-регистрирующим устройством ОРУ. Поскольку частота генератора фиксирована, При постоянстве амплитуды Umax импульсов триггера Т2 в качестве ПСЗ можно использовать преобразователь сред­него значения импульсного сигнала в пропорциональное напряжение постоянного тока Ucp. В этом случае его вы­ходное напряжение Uвых однозначно определяет длитель­ность преобразуемых импульсов, а следовательно, дли­тельность переходного процесса tycт, т. е.:


                                  (2)


Время измерения tизм определяется выбранным чис­лом п измерений в каждой точке переходного процесса и дискретным значением δt:


                                                       (3)


Как следует из рассмотренной схемы, результирую­щая погрешность измерения времени установления tуст определяется в основном разрешающей способностью ΔUк стробируемых компараторов и ограниченностью полосы пропускания измерителя, приводящей к искажению переходного процесса. Относительная погрешность γ обусловленная величиной ΔUк, зависит в свою очередь от крутизны S исследуемого сигнала U(t) в точке пере­сечения с границей зоны допустимых значений:


                               (4)


Это соотношение показывает, что погрешность γ, обу­словленная разрешающей способностью компараторов, в значительной мере зависит от характера переходного процесса и возрастает с уменьшением производной иссле­дуемого сигнала в момент окончания переходного про­цесса.

Влияние полосы пропускания схемы измерения проявляется в ослаблении высокочастотных составляющих выходного сигнала ЦАП, что приводит к изменению дли­тельности временного интервала, соответствующего длительности переходного процесса, а следовательно, к появлению ошибки преобразования. При нахождении полосы пропускания измерителя необходимо учитывать максимально возможный спектр частот F анализируемого сигнала:


F = (1 ÷ 2)/т                                                                   (5)


где т — длительность видеоимпульса.

Для неискаженной передачи этих сигналов полоса частот измерителя должна в 3—5 раз превышать зна­чение F.

Рассмотренные погрешности определяют в основном результирующую погрешность измерения, поскольку по­грешность измерения временного интервала, соответствующего времени установления, может быть простыми схемотехническими средствами сведена к пре­небрежимо малой величине.


Список литературы


1. Измерения и контроль в микроэлектронике: Учебное пособие по специальностям электронной техники / Дубовой Н.Д., Осокин В.И., Очков А.С. и др.; Под ред. А.А.Сазонова. - М.: Высшая школа, 1984. - 367с.

2 Глудкин О.П., Черняева В.Н. Технология испытания микроэлементов радиоэлектронной аппаратуры и интегральных микросхем. – М.: Энергия, 1980.

3 Микроэлектроника: Учеб. пособие для втузов. В 9 кн. / Под ред. Л.А.Коледова. Кн. 5. И.Я.Козырь. Качество и надёжность интегральных микросхем. – М.: Высшая школа, 1987. – 144 с.

4 Измерение параметров цифровых интегральных микросхем / Д.Ю.Эйдукас, Б.В.Орлов, Л.М.Попель и др.; Под ред. Д.Ю.Эйдукаса, Б.В.Орлова. – М.: Радио и связь, 1982.

5 Докучаев Н.И., Козырь И.Я. Онопко Д.И. Испытания и измерения интегральных микросхем. – М.: Изд. МИЭТ, 1978.

6 Докучаев Н.И., Коледов Л.А. Элементы надёжности и измерение параметров интегральных микросхем. – М.: Изд. МИЭТ, 1979.


Страницы: 1, 2



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать