Лекции по твердотельной электронике


Рис. 73. Схема распределения носителей в структуре тиристора в выключенном (т. А) и включенном состояниях (т. В).


Эквивалентная схема тиристора может быть представлена с помощью двух разнополярных транзисторов, имеющих общий коллекторный переход (рис. 74)

Рассчитаем условие переключения тиристора, приняв за начало переключения момент, в который за счет положительной обратной связи начинается нарастание тока.

Для токов электронного и дырочного токов коллекторного перехода  можно записать: Iкp = αpIэp = αpIа,  Iкn = αnIэp =αnIкат, где Iкp, Iэp, Iкn - соответственно управляемые дырочные и электронные токи эмиттера и коллектора, αp и αn коэффициенты передачи тока соответственно для pnp и npn транзисторов, Iа, Iкат - токи анода и катода (в рассматриваемом случае      Iа = Iкат = I) . Общий ток тиристора I,  будет включать как управляемые токи, так и тепловой ток коллекторного перехода Iк0:    I =  αpIа + αnIк+ Iк0 = Iк0 + (αp+ αn) I.

Откуда:

                                      (5_1)

Из этой формулы следует, что если

(αp + αn) → 1,                                            (5_2)

то ток тиристора стремится к бесконечности. Таким образом (5_2) и будет условием включения тиристора. На рис. 74 показаны зависимости коэффициентов αp, αn и αS = (αp + αn) от тока через тиристор. Поскольку ток определяется напряжением на тиристоре, аналогичная зависимость будет если использовать в качестве аргумента напряжение. При этом моменту включения тиристора будут соответствовать значения некоторого порогового тока и напряжения: Iвкл, Uвкл. Изменяя характер зависимости αp(I) или αn(I) возможно изменять значения тока и напряжения, при которых происходит переход тиристора в состояние с малым сопротивлением.

Для того, чтобы поднять напряжение включения часто искусственно занижают значение коэффициента передачи тока. Для этого можно использовать либо технологические приемы, например такие как уменьшение времени жизни носителей заряда в базе или увеличение толщины базы. Часто используют схемотехнические приемы шунтируя эмиттерный переход внешним сопротивлением.


Рис. 74. Диаграмма, поясняющая влияние зависимостей коэффициентов передачи тока от тока (напряжения) на порог включения тиристора..


Для того, чтобы снизить  порог включения достаточно ввести неосновные носители заряда в одну из баз тиристора. Осуществить это возможно изготовив дополнительный управляющий электрод к одной из баз транзистора (см. рис. 70 б, в, г, д. ).  Тогда чем больше ток управляющего электрода, тем раньше будет наступать включение (см. рис. 71 б).


Рис. 74. Эквивалентные схемы тиристора.

Чтобы выключить транзистор необходимо создать условия при которых исчезает заряд инжектированный в базы транзистора и соответственно концентрации неосновных носителей около коллекторного перехода становится меньше или равны равновесным. При этом будет иметь место выход pnp и npn транзисторов из режима насыщения и соответственно переход тиристора в состояние с высоким сопротивлением. Проще всего выключить тиристор прекратив на некоторое время инжекцию заряда через эмиттерные переходы. При питании тиристора переменным напряжением это происходит автоматически в момент, когда напряжение проходит через ноль. Существуют специальные , запираемые типы тиристоров, в которых выключению способствует вытягивание носителей из базы управляющим электродом.

Широкое распространение в цепях переменного тока находят тиристоры с симметричными характеристиками - семисторы. Семисторы могут иметь управляющий, который позволяет изменять порог включения. На рис. 75 показаны примеры различных конструкций семисторов.  



Рис. 75. Конструкции семисторов: а) неуправляемый, б) управляемый отрицательным импульсом, в) управляемый положительным импульсом.


Как видно из рис. 75, по существу, семистор представляет пятислойную структуру, в которой эмиттерные переходы зашунтированы металлическим слоем. В зависимости от полярности включается тот переход, который работает в прямом направлении.

6. ПОЛЕВЫЕ ТРАНЗИСТОРЫ

6.1. Особенности полевых транзисторов

Среди многочисленных разновидностей полевых транзисторов возможно выделить два основных класса: полевые транзисторы с затвором в виде pn перехода и полевые транзисторы с затвором, изолированным от рабочего полупроводникового объема диэлектриком. Приборы этого класса часто так же называют МДП транзисторами (от словосочетания металл -диэлектрик - полупроводник) и МОП транзисторами (от словосочетания металл-окисел - полупроводник), поскольку  в качестве диэлектрика чаще всего используется окись кремния.

Основной особенностью полевых транзисторов, по сравнению с биполярными, является их высокое входное сопротивление, которое может достигать 109 - 1010 Ом. Таким образом эти приборы можно рассматривать как управляемые потенциалом, что позволяет на их основе создать схемы с чрезвычайно низким потреблением энергии в статическом режиме. Последнее особенно существенно для  электронных статических микросхем памяти с большим количеством запоминающих ячеек.

Так же как и биполярные полевые трнзисторы могут работать в ключевом режиме, однако падение напряжения на них во включенном состоянии весьма значительно, поэтому эффективность их работы в мощных схемах меньше, чем у биполярных приборов.

Полевые транзисторы могут иметь как p, так и n управление которыми осуществляется при разной полярности на затворах . Это свойство комплементарности расширяет возможности при конструировании схем и широко используется при создании запоминающих ячеек и цифровых схем на основе МДП транзисторов (CMOS схемы).

Полевые транзисторы относятся к приборам униполярного типа, это означает, что принцип их действия основан на дрейфе основных носителей заряда.  Последнее обстоятельство значительно упрощает их анализ по сравнению с биполярными приборами, поскольку, в первом приближении, возможно пренебречь диффузионными токами, неосновными носителями заряда и их рекомбинацией.


!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

Лекция 19.................................................................................................................................... 10

Лекция 20.................................................................................................................................... 14

Лекция 21.................................................................................................................................... 18

Лекция 19

6.2. Полевые транзисторы с изолированным затвором (МДП)

6.2. 1. Свойства МДП структуры.


В основе работы полевых  транзисторов с изолированным затвором лежат свойства МДП структуры (рис. 81 ). 


Рис. 81. Пример МДП структуры

По существу эта структура представляет плоский конденсатор одной из обкладок которого служит металл (затвор), второй полупроводник. Особенность такого МДП конденсатора по отношению к классическому МДМ конденсатору в том, что в объеме полупроводника заряд может быть связан с носителями разной физической природы и разной полярности: свободными электронами и дырками, заряженными положительно ионизованными донорами, заряженными отрицательно ионизованными акцепторами, а так же заряженными дефектами.  В МДП структуре в отличие от pn перехода существует гетерограница разделяющая две среды с различной структурой это, например, граница разделяющая полупроводник и его окисле или другой диэлектрик или полупроводник и воздух (вакуум). На свободной границе полупроводника имеется большое количество оборванных связей стремящихся захватить заряд из объема полупроводника , а так же связей вступивших в реакцию с сооседней средой и пассивированных этой средой, кроме того на поверхности могут находиться посторонние примесные атомы и ионы.  Таким образом на свободной поверхности и гетеропереходе металл-диэлектрик уже в начальном состоянии может находиться некоторый заряд, который индуцирует равный ему по величине и противоположный по знаку заряд в объеме полупроводника.  На рис. 82 показана схема поверхности частично пассивированной радикалами ОН и атомами О, а так же соответствующие поверхностным дефектам поверхностные энергетические состояния, дающие дополнительные уровни в запрещенной зоне, которые локализованы вблизи поверхности.   ЩР








Рис. 82. Диаграмма, поясняющая возникновение поверхностных состояний на границе кристалла.


Если зарядить одну из обкладок МДП конденсатора - затвор, то на второй - полупроводниковой обкладке должен появиться заряд равный по величине и противоположный по знаку, который будет связан с поверхностными состояниями, ионизованными атомами примеси и свободными носителями заряда. Если индуцированный внешним полем заряд на полупроводниковой обкладке превышает изменение заряда на поверхностных состояниях, то  в  приповерхностной области полупроводника происходит изменение концентрации свободных носителей заряда, что сопровождается  изменением поверхностной проводимости (см. рис. 83) и соответственно протекающего вдоль поверхности тока, в случае если имеется направленное вдоль поверхности поле, как это показано на вставке рис. 83.


Рис. 83. Изменение поверхностной проводимости полупроводнка в МДП структуре: 1 - полупроводник n типа, 2 - собственный полупроводник, 3 - полупроводник p типа.

В той приповерхностной  полупроводниковой области, где существует электрическое поле имеется обедненная носителями область пространственного заряда, аналогичная по свойствам области ОПЗ pn перехода, работающая как диэлектрик. При изменении потенциала на металлической (затворе) обкладке МДП конденсатора будет изменяться заряд  ОПЗ  и соответственно ширина  обедненной области. При этом будет изменяться емкость МДП структуры. Зависимости емкости МДП структур от напряжения показаны на рис. 84. Емкость МДП структуры можно рассматривать как состоящую из двух последовательно включенных емкостей: емкости диэлектрика - Сд и  емкости слоя пространственного заряда в полупроводнике Спп.

Страницы: 1, 2, 3



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать