Логические системы в различных функциональных наборах и их реализация

1.   XYZP Ú XYZP Ú XYZP Ú XYZP Ú XYZP Ú XYZP Ú XYZP Ú XYZP Ú XYZP Ú XYZP Ú XYZP Ú XYZP = XYZ Ú XZP Ú XZP Ú YZP Ú XYZ Ú XZP = ZP Ú XYZ Ú XZP Ú YZP Ú XYZ

2.   XYZP Ú XYZP Ú XYZP Ú XYZP Ú XYZP Ú XYZPÚ XYZP Ú XYZP Ú XYZP Ú XYZP = YZP Ú YZP Ú XZP Ú XYZ Ú XYZ = XY Ú YZP Ú YZP Ú XZP

3.   Ú XYZP Ú XYZP Ú XYZP Ú XYZP Ú XYZP Ú XYZPÚ XYZP Ú XYZP Ú XYZP Ú XYZP Ú XYZP = XZP Ú XYP Ú XYZ Ú XZP Ú XZP Ú XYZP


2.7. Представление ФАЛ в виде куба

 

 








3. Исследование ФАЛ.

3.1. Матрица отношений.

 

Построить матрицу отношений T:H ´ A. Матрица отношений представляет собой таблицу, строками которой являются записи (кортежи признаков), а строками  отношения, которые имеют все уникальные имена. Матрица отношения представлена в таблице 3.

 

 

Матрица отношений. Табл. 3

 

3.2. Исследование ФАЛ на толерантность.

 

Определим классы толерантности. Рассмотрим классы толерантности k1, k2, k3, имеющие общие элементы, следовательно, являющиеся пересекающимися множествами.


h1 = h(a1) = h(A) = { X0, X1, X3, X5, X6, X7, X9, X12, X13, X14 }

h2 = h(a2) = h(B) = { X1, X2, X8, X9, X10, X11, X12 }

h3 = h(a3) = h(C) = { X0, X3, X5, X6, X7, X9, X10, X13, X14 }


Проанализировав классы h1, h2, h3, можно получить: k1 Ç k2 = 0;

k1 Ç k3 = 0; k2 Ç k3 = 0, т.е. {k1, k2, k3 } - образуют класс толерантности

Результаты исследования занесем в таблицу 3.

 

3.3. Исследование ФАЛ на эквивалентность.

 

Определим классы эквивалентности для этого множества А = {Х0, Х1, ....,  Х15 } разобьем на классы эквивалентности, получим 6 классов


М1 = {AC} = {X0,X3,X5,X6 X7,X13,X14}


М2 = {AB} = {X1,X12}


М3 = {B} = {X2,X8,X11}


М4 = { } = {X4,X15}


М5 = {ABC} = {X9}


М6 = {BC} = {X10}


При этом каждый класс полностью определяется любым его представителем. Сопоставив результаты исследования с результатами пункта 3.2 получим следующие зависимости


М1 Ì K1

М2 Ì K1

М3 Ì K2

М5 Ì K1

М6 Ì K2

М1 Ì K3

М2 Ì K2


М5 Ì K2

М6 Ì K3




М5 Ì K3



или

K1 = M1 È M2 È M5

K2 = M2 È M3 È M5 È M6

K3 = M1 È M5 È M6



Результаты исследования занесены в таблицу 3. Результаты исследования на эквивалентность и толерантность необходимы для оптимизации построения логической схемы.


3.4. Матрица эквивалентности и толерантности.

 

Матрицу эквивалентности и толерантности можно представить в виде квадрата, по диагонали которого строятся классы эквивалентности, а затем устраиваются отношения толерантности. Матрица эквивалентности и толерантности представлена в таблице 4.


 

Матрица эквивалентности и толерантности. Таблица 4.

 

3.5. Диаграмма Эйлера.

 

Диаграмма Эйлера дает наглядное представление о том, как распределяются признаки по классам толерантности и эквивалентности. Диаграмма Эйлера для выбранных ФАЛ представлена на рисунке 3.5.

Диаграмма Эйлера. Рис. 3.5

 

3.6. Построение комбинационной схемы.

 

Комбинационная схема автомата распознавания набора признаков H = {h1, h3, h5 } построена на основе результатов исследований в пункте 3.1 и пункте 3.4.


 

Таблица 5

 


Используя таблицу 5, можно записать следующие отношения:


G1 = (XYZP) Ú (XYZP) Ú (XYZP) Ú (XYZP) Ú (XYZP) Ú (XYZP) Ú (XYZP) = (XYZP) Ú (XYZP) Ú (XYZP) Ú (XYZ) Ú (YZP)

G2 = (XYZP) Ú (XYZP)

G3 = (XYZP) Ú (XYZP) Ú (XYZP)

G4 = (XYZP) Ú (XYZP)

G5 = (XYZP)

G6 = (XYZP)

Тогда ФАЛ можно представить в виде:


F1 = G1 Ú G2 Ú G5

F3 = G2 Ú G3 Ú G5 Ú G6

F5 = G1 Ú G5 Ú G6

Эти отношения эквивалентны ФАЛ в СДНФ, полученным в пункте 2.5.


Комбинационная схема строилась в два этапа:

1 этап: - построение комбинационной схемы на элементах и, или, 

           (нестандартных).

2 этап: - замена нестандартных элементов на стандартные и-не

Окончательный вариант комбинационной схемы приведен в приложении 1.


Список использованной литературы

 

1. В.П. Сигорский. «Математический аппарат инженера» - издательство Киев: Техника - 1975 г.


Заключение

 

Проведя анализ на толерантность и эквивалентность, мы построили автомат, распознающий кортеж признаков H = {h1, h3, h5 }, который состоит из 16 - ти логических элементов.


Страницы: 1, 2, 3



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать