3
1
3
К14
2
2
2
2
2
2
2
2
2
0
0
0
3
1
Для размещения корпусов микросхем на печатной плате воспользуемся последовательным алгоритмом размещения:
1) Устанавливаем в какую-либо позицию любой из элементов.
2) Выбираем элемент для установки на текущем шаге. Для этого определяем коэффициент связности всех не установленных элементов с ранее установленными (по матрице смежности):
(2.1)
где aij – число
связей с ранее установленными элементами;
Vi – общее число связей элемента;
2) Выбираем элемент с максимальным коэффициентом связности Ф.
3) Пытаемся установить выбранный элемент в одну из незанятых позиций. Считаем для этой позиции DF по формуле:
(2.2)
где aij – количество
связей между i-м и j-м элементами;
rij – расстояние между элементами, берётся из
матрицы расстояний;
fij – элемент матрицы весовых коэффициентов;
4) Повторяем пункт 3 для всех свободных позиций на печатной плате. Окончательно устанавливаем выбранный элемент в позицию с минимальным DF.
5) Повторяем пункты 2 - 4 пока не установим все элементы.
Произведём размещение элементов по вышеописанному алгоритму.
В нашем случае, поскольку все элементы равноправны, матрица весовых коэффициентов в формуле 2.2 будет единичной, поэтому этот параметр мы указывать не будем. В первую очередь установим разъём в позицию К14, т.к. его положение жёстко определено конструкторскими ограничениями.
Вычислим коэффициенты связности:
Ф1=Ф2=Ф3=Ф4=Ф5=Ф6=Ф7=Ф8=Ф9=2/7;
Ф10=Ф11=Ф12=0\6=0;
Ф13=3/12;
Выбираем элемент DD1. Поскольку позиции К10,К11,К12 и К13 равноценны с точки зрения минимума длинны связи с разъёмом, то установим DD1 в позицию К13.
Снова рассчитываем коэффициенты связности:
Ф2=Ф3=Ф4=Ф7=3/7;
Ф5=Ф6=Ф8=Ф9=2/7;
Ф10=Ф11=Ф12=0\6=0;
Ф13=3/12;
Из наиболее связанных выбираем элемент DD2. Расчитываем DF для позиций К9, К10, К11 и К12 как наиболее подходящих для установки,
поскольку DF для
остальных позиций будет заведомо больше, и его расчёт не имеет смысла.
DF9=1*1+2*2=5;
DF10=DF11=DF12=1*2+2*1=4;
Устанавливаем элемент DD2 в позицию К10.
Снова рассчитываем коэффициенты связности:
Ф3=4/7;
Ф4=Ф7=Ф5=Ф6=3/7;
Ф8=Ф9=2/7;
Ф10=Ф11=1/6;
Ф12=0\6=0;
Ф13=3/12;
Из наиболее связанных выбираем элемент DD3. Рассчитываем DF
для позиций К9 и К11:
DF9=1*1+1*1+2*2=6;
DF11=1*2+2*1=4;
Устанавливаем элемент DD3 в позицию К11.
Снова рассчитываем коэффициенты связности:
Ф4=Ф5=Ф6=Ф7=Ф8=Ф9=3/7;
Ф12=Ф10=Ф11=1/6;
Ф13=3/12;
Из наиболее связанных выбираем элемент DD4. Рассчитываем DF
для позиций К9 и К12:
DF9=1*1+0*1+0*2+2*2=5;
DF12=1*2+0*2+0*1+2*1=4;
Устанавливаем элемент DD4 в позицию К12.
Аналогичные расчёты проводим до тех пор, пока не расставим все элементы по позициям печатной платы. В результате расчётов получаем следующее размещение микросхем на плате:
DD10
DD11
DD13
DD12
DD9
DD8
DD6
DD7
DD5
DD2
DD3
DD4
DD1
XS1
Рис. 2.3
Сборочный чертёж получившейся печатной платы приводится в графической части.
3. ТРАССИРОВКА МОНТАЖНЫХ СОЕДИНЕНИЙ.
3.1 Трассировка с помощью алгоритма Прима
На основании полученных ранее данных и требований задания проведем трассировку общего провода цепи питания печатной платы блока оперативной памяти методом Прима. Для этого приведём необходимый участок печатной платы в сетке с шагом 5. Вывод 1 разъёма должен быть соединён с выводами 7 DD1-DD13. Пронумеруем точки соединений от 1 до 14.
Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22