Многопроцессорные системы

1 Несколько последовательных операций записи в одно и то те слово, не перемежающихся операциями чтения, требуют нескольких операций трансляции при использовании протокола записи с обновлением, но только одной начальной операции аннулирования при использовании протокола записи с аннулированием.

2 При наличии многословных блоков в кэш-памяти каждое слово, записываемое в блок кэша, требует трансляции при использовании протокола записи с обновлением, в то время как только первая запись в любое слово блока нуждается в генерации операции аннулирования при использовании протокола записи с аннулированием. Протокол записи с аннулированием работает на уровне блоков кэш-памяти, в то время как протокол записи с обновлением должен работать на уровне отдельных слов (или байтов, если выполняется запись байта).

3 Задержка между записью слова в одном процессоре и чтением записанного значения другим процессором обычно меньше при использовании схемы записи с обновлением, поскольку записанные данные немедленно транслируются в процессор, выполняющий чтение (предполагается, что этот процессор имеет копию данных). Для сравнения, при использовании протокола записи с аннулированием в процессоре, выполняющим чтение, сначала произойдет аннулирование его копии, затем будет производиться чтение данных и его приостановка до тех пор, пока обновленная копия блока не станет доступной и не вернется в процессор. Эти две схемы во многом похожи на схемы работы кэш-памяти со сквозной записью и с записью с обратным копированием. Также как и схема задержанной записи с обратным копированием требует меньшей полосы пропускания памяти, так как она использует преимущества операций над целым блоком, протокол записи с аннулированием обычно требует менее тяжелого трафика, чем протокол записи с обновлением, поскольку несколько записей в один и тот же блок кэш-памяти не требуют трансляции каждой записи. При сквозной записи память обновляется почти мгновенно после записи (возможно с некоторой задержкой в буфере записи). Подобным образом при использовании протокола записи с обновлением другие копии обновляются так быстро, насколько это возможно. Наиболее важное отличие в производительности протоколов записи с аннулированием и с обновлением связано с характеристиками прикладных программ и с выбором размера блока.

Основы реализации. Ключевым моментом реализации в многопроцессорных системах с небольшим числом процессоров как схемы записи с аннулированием, так и схемы записи с обновлением данных, является использование для выполнения этих операций механизма шины. Для выполнения операции обновления или аннулирования процессор просто захватывает шину и транслирует по ней адрес, по которому должно производиться обновление или аннулирование данных. Все процессоры непрерывно наблюдают за шиной, контролируя появляющиеся на ней адреса. Процессоры проверяют не находится ли в их кэш-памяти адрес, появившийся на шине. Если это так, то соответствующие данные в кэше либо аннулируются, либо обновляются в зависимости от используемого протокола. Последовательный порядок обращений, присущий шине, обеспечивает также строго последовательное выполнение операций записи, поскольку когда два процессора конкурируют за выполнение записи в одну и ту же ячейку, один из них должен получить доступ к шине раньше другого. Один процессор, получив доступ к шине, вызовет необходимость обновления или аннулирования копий в других процессорах. В любом случае, все записи будут выполняться строго последовательно. Один из выводов, который следует сделать из анализа этой схемы, заключается в том, что запись в разделяемый элемент данных не может закончиться до тех пор, пока она не захватит доступ к шине.

В дополнение к аннулированию или обновлению соответствующих копий блока кэш-памяти, в который производилась запись, мы должны также разместить элемент данных, если при записи происходит промах кэш-памяти. В кэш-памяти со сквозной записью последнее значение элемента данных найти легко, поскольку все записываемые данные всегда посылаются также и в память, из которой последнее записанное значение элемента данных может быть выбрано (наличие буферов записи может привести к некоторому усложнению). Однако для кэш-памяти с обратным копированием задача нахождения последнего значения элемента данных сложнее, поскольку это значение скорее всего находится в кэш, а не в памяти. В этом случае используется та же самая схема  наблюдения, что и при записи: каждый процессор наблюдает и контролирует адреса, помещаемые на шину. Если процессор обнаруживает, что он имеет модифицированную копию блока кэш-памяти, то именно он должен обеспечить пересылку этого блока в ответ на запрос чтения и вызвать отмену обращения к основной памяти. Поскольку кэш с обратным копированием предъявляют меньшие требования к полосе пропускания памяти, они намного предпочтительнее в мультипроцессорах, несмотря на некоторое увеличение сложности. Поэтому далее мы рассмотрим вопросы реализации кэш-памяти с обратным копированием. Для реализации процесса наблюдения могут быть использованы обычные теги кэш. Более того, упоминавшийся ранее бит достоверности (valid bit), позволяет легко реализовать аннулирование. Промахи операций чтения, вызванные либо аннулированием, либо каким-нибудь другим событием, также не сложны для понимания, поскольку они просто основаны на возможности наблюдения. Для операций записи мы хотели бы также знать, имеются ли другие кэшированные копии блока, поскольку в случае отсутствия таких копий, запись можно не посылать на шину, что сокращает время на выполнение записи, а также требуемую полосу пропускания.

Чтобы отследить, является ли блок разделяемым, мы можем ввести дополнительный бит состояния (shared), связанный с каждым блоком, точно также как это делалось для битов достоверности (valid) и модификации (modified или dirty) блока. Добавив бит состояния, определяющий является ли блок разделяемым, мы можем решить вопрос о том, должна ли запись генерировать операцию аннулирования в протоколе с аннулированием, или операцию трансляции при использовании протокола с обновлением. Если происходит запись в блок, находящийся в состоянии «разделяемый» при использовании протокола записи с аннулированием, кэш формирует на шине операцию аннулирования и помечает блок как частный (private). Никаких последующих операций аннулирования этого блока данный процессор посылать больше не будет. Процессор с исключительной (exclusive) копией блока кэш-памяти обычно называется «владельцем» (owner) блока кэш-памяти.

При использовании протокола записи с обновлением, если блок находится в состоянии «разделяемый», то каждая запись в этот блок должна транслироваться. В случае протокола с аннулированием, когда посылается операция аннулирования, состояние блока меняется с «разделяемый» на «неразделяемый» (или «частный»). Позже, если другой процессор запросит этот блок, состояние снова должно измениться на «разделяемый». Поскольку наш наблюдающий кэш видит также все промахи, он знает, когда этот блок кэша запрашивается другим процессором, и его состояние должно стать «разделяемый».

Поскольку любая транзакция на шине контролирует адресные теги кэша, потенциально это может приводить к конфликтам с обращениями к кэшу со стороны процессора. Число таких потенциальных конфликтов можно снизить применением одного из двух методов: дублированием тегов, или использованием многоуровневых кэшей с «охватом» (inclusion), в которых уровни, находящиеся ближе к процессору являются поднабором уровней, находящихся дальше от него. Если теги дублируются, то обращения процессора и наблюдение за шиной могут выполняться параллельно. Конечно, если при обращении процессора происходит промах, он должен будет выполнять арбитраж с механизмом наблюдения для обновления обоих наборов тегов. Точно также, если механизм наблюдения за шиной находит совпадающий тег, ему будет нужно проводить арбитраж и обращаться к обоим наборам тегов кэш (для выполнения аннулирования или обновления бита «разделяемый»), возможно также и к массиву данных в кэше, для нахождения копии блока. Таким образом, при использовании схемы дублирования тегов процессор должен приостановиться только в том случае, если он выполняет обращение к кэш в тот же самый момент времени, когда механизм наблюдения обнаружил копию в кэш. Более того, активность механизма наблюдения задерживается только тогда, когда кэш имеет дело с промахом. Если процессор использует многоуровневый кэш со свойствами охвата, тогда каждая строка в основном кэш имеется и во вторичном кэш. Таким образом, активность по наблюдению может быть связана с кэш второго уровня, в то время как большинство активностей процессора могут быть связаны с первичным кэш. Если механизм наблюдения получает попадание во вторичный кэш, тогда он должен выполнять арбитраж за первичный кэш, чтобы обновить состояние и возможно найти данные, что обычно будет приводить к приостановке процессора. Такое решение было принято во многих современных системах, поскольку многоуровневый кэш позволяет существенно снизить требований к полосе пропускания. Иногда может быть даже полезно дублировать теги во вторичном кэш, чтобы еще больше сократить количество конфликтов между активностями процессора и механизма наблюдения. В реальных системах существует много вариаций схем когерентности кэш, в зависимости от того используется ли схема на основе аннулирования или обновления, построена ли кэш-память на принципах сквозной или обратной записи, когда происходит обновление, а также имеет ли место состояние «владения» и как оно реализуется.


3.2 Многопроцессорные системы с локальной памятью

Существуют два различных способа построения крупномасштабных систем с распределенной (локальной) памятью. Простейший способ заключается в том, чтобы исключить аппаратные механизмы, обеспечивающие когерентность кэш-памяти, и сосредоточить внимание на создании масштабируемой системы памяти. Наиболее известным примером такой системы является компьютер T3D компании Cray Research. В этих машинах память распределяется между узлами (процессорными элементами) и все узлы соединяются между собой посредством того или иного типа Машины с архитектурой, подобной Cray T3D, называют процессорами (машинами) с массовым параллелизмом (MPP - Massively Parallel Processor). К машинам с массовым параллелизмом предъявляются взаимно исключающие требования. Чем больше объем устройства, тем большее число процессоров можно расположить в нем, тем длиннее каналы передачи управления и данных, а значит и меньше тактовая частота. Происшедшее возрастание нормы массивности для больших машин до 512 и даже 64К процессоров обусловлено не ростом размеров машины, а повышением степени интеграции схем, позволившей за последние годы резко повысить плотность размещения элементов в устройствах. Топология сети обмена между процессорами в такого рода системах может быть различной. сети. Доступ к памяти может быть локальным или удаленным.

Страницы: 1, 2, 3, 4, 5, 6



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать