1. В [4] описана конструкция ОЭ, имеющего три рабочие поверхности (a, b, c) сложной асферической формы (рис.4). Особенностью конструкции является то, что отражение от поверхности b осуществляется либо на зеркальном, либо на прозрачном участке за счет полного внутреннего отражения.
2. Там же рассмотрена конструкция ОЭ со сферической (а), эллиптической (b), параболической (c) и плоской (d) поверхностями (рис. 5).
3. На рис. 6 показана конструкция [2] ОЭ с поверхностями в виде сферы (а), параболы (b), w-образного аксикона (c) и плоскости (d).
Математическое моделирование конструктивных и оптических параметров, а также анализ технологических факторов показал [2], что наиболее высокие характеристики по п.п. 1-5 можно получить, используя конструкцию по рис. 4. При этом размер излучающей площадки не должен превышать 1мм, а световой диаметр ОЭ должен быть не более 40—60 мм.
Изготовлена [2] опытная партия ОЭ с конструкцией по рис.4. Диаметр ОЭ составляет 40 мм, толщина 11,6 мм. Высокое качество получаемой оптической поверхности (коэффициент диффузного рассеяния в видимом диапазоне не превышал 0,7%) позволило использовать весь арсенал вакуумных оптических покрытий. Среди них серебряные отражающие покрытия с коэффициентом зеркального отражения в видимом и ближнем ИК-диапазоне до 97%. Разработаны просветляющие покрытия, которые дополнительно повышают механическую прочность и атмосферостойкоеть поверхности, а также заметно, на 10—20%, уменьшают доступ УФ-излучения в массу полимера, замедляя процессы старения. Излучающий кристалл помещен внутри ОЭ в иммерсионной среде. Потери излучения в ОЭ не превышают 10% (в оптимальном варианте около 6%), а угол расхождения выходящего излучения составляет 2q0.5=2°. На кристалле с силой света около 500 мКд удается получить осевую силу света более 500 кд, т.е. достигается концентрация излучения СИД примерно на три порядка.
Результаты, полученные на устройствах, показанных на рис. 4 имеют следующее применение [4]:
1. Повышение дальности связи по оптическому каналу в атмосфере до 1 км и более от единичного СИД. Если разместить внутри ОЭ площадку фотоприемника, что многократно повышает соотношение сигнал—шум, дальность действия такой оптопары может составить 3-5 км при "средних" метеоусловиях. Системы автоматизации и техники безопасности становятся дистанционными, что может оказаться принципиальным, например, на радиационно-опасных объектах.
2. Увеличение коэффициента использования излучения СИД. Традиционные ИС, как правило, излучают свет во все стороны. С помощью ОЭ практически без потерь можно сконцентрировать световой поток излучателя на площадке заданной конфигурации. Такие излучатели могут найти применение в аварийных и иных подобных системах.
3. Для сигнальных систем с точно определенным положением наблюдателя, например, для семафоров па железной дороге или в метро, достаточно несколько СИД с осевой силой света не менее 500 кд. Для сигнальных систем с нефиксированным, но ограниченным в пространстве положением наблюдателя, например, для уличных светофоров, желательны СИД с увеличенным углом расхождения, но с сохранением минимума потерь излучения. В конструкции ОЭ такая возможность предусмотрена путем изменения прозрачности или размеров центрального зеркала, частично путем расфокусировки источника.
4. Направляя паралельный поток излучения от ОЭ на зеркально отражающий конус, можно сформировать сигнал с малым углом излучения в одной плоскости и 360° в другой. Такая схема освещения удобна для проблесковых маячков на специальных автомашинах, для подсветки знаков дорожной и водной обстановки.
5. Известные в практике охранные системы, работающие в ИК-дипазоне, превращаются в автономные, легко устанавливаемые, переносные.
Ещё один пример ОЭ СИД, состоящего из трёх сочленённых поверхностей, приведён на рис.7. Световыводящая часть полимерного корпуса выполнена в виде тела вращения, сочленённого из трёх поверхностей: эллиптической, конусообразной и параболической. Тело свечения расположено в фокусе эллипса, совмещённого с фокусом параболоида. Эллиптическая поверхность выводит из прибора параллельно оптической оси весь падающий свет, за исключением той его части, которая, испытывает полное внутреннее отражение или рассеяние компаундом в заднюю полусферу. Параболическая поверхность также выводит лучи (не попавшие на эллипсоид, а отразившиеся прямо от параболоида) параллельно оптической оси. Лучи, отразившиеся от параболоида, испытывают преломление на конусообразной поверхности, но их направление параллельно оптической оси сохраняется. Таким образом, за счёт использования усечённых эллипсоида и параболоида удаётся повысить силу излучения диода в заданном направлении, сохранив при этом узкую диаграмму направленности. Конкретная ширина диаграммы направленности определяется степенью близости реальных геометрических параметров ОЭ к расчётным.
Конструирование СИД с широкой диаграммой направленности представляет меньшие трудности, чем с узкой. Практически единственное, о чём придётся беспокоиться разработчику таких СИД, - требуемая (а не случайная) равномерность распределения потока. Примеры конструкции СИД с круговым свечением и их КСС представлены на рис.8 и рис.9. Приложения.
Заключение
Из-за существенной ограниченности пространства, непосредственно прилегающего к телу свечения (p-n - переходу), возникают проблемы с установкой ОЭ вблизи посадочного места кристалла (один из вариантов - направляющий отражатель в виде усечённого конуса (элемент 2 на рис.1)). Поэтому основная работа по приданию КСС СИД параметров, близких к требуемым, ведётся в направлении создания миниатюрных линз и отражателей (компаунд-линза с зеркалированными участками), совмещённых с корпусом СИД и приданию определённых свойств полимерному компаунду (введение люминофора, являющегося одновременно рассеивателем для уширения и усреднения по пространству КСС).
Решение проблемы конструирования направляющих отражателей в лучевом приближении укладывается в рамки геометрической оптики. Основная проблема в этой области – отработка технологии изготовления: придание небольшим по размерам линзе-компаунду и прилегающему отражателю заданной чистоты поверхности, нанесение отражающих металлизированных участков поверхности. При этом СИД не должен потерять одного из своих существенных достоинств – невысокой стоимости.
Решение вопроса о влиянии на КСС компаунда с введёнными в него частицами должен решаться с позиций рассмотрения процесса переноса излучения в мутной (рассеивающей и поглощающей) среде.
Приложение
Рис.1 Конструкция светодиодного осветителя [2]
1 – излучающие кристаллы
2 – отражатель бокового излучения
3 – кристаллодержатель
4 – полусферический полимерный купол
5 – изолированные выводы
Рис. 2 Типичные пространственные распределения [2]
силы света приборов:
1 – типа У-345Бл
2 - типа У-342Бл и У-337Бл
Цифрами обозначена ширина пространственного распределения
по уровням 0.5, 0.1
Рис. 3 Модуль светодиодный осветительный
белого свечения типа МСО-3Бл [3]
Рис 4.Оптический элемент с асферическими рабочими поверхностями [4]
Рис 5. Оптический элемент со сферической (a), эллиптической (b), параболической (c) и плоской (d) поверхностями [4]
Рис 6. Оптический элемент со сферической (a), параболической (b), w-образной (c) и плоской (d) поверхностями [4]
На всех рисунках 4-6 обозначены:
1 – излучающий кристалл
2 – полость с иммерсионной средой
3 – теплосъёмник
4 – зеркализованные участки
Рис. 7 Конструкция СИД с узкой КСС [5]
1 – Ножки с выводами
2 – Тело свечения
3 – Часть поверхности, близкой к эллиптической
4 – Часть поверхности, близкой к параболической
5 – Часть поверхности, близкой к конической
Рис. 8 Конструкция светодиодных излучателей
с круговым излучением типа У-204(а) и У-205(б) [3]:
1 – Место размещения кристалла
2 – Полимерный корпус с встроенным отражателем
3 – Дюралевый радиатор
4 – Пластмассовая стойка
5 – Дюралевый корпус
Рис. 9 Диаграмма направленности излучения в вертикальной плоскости
приборов У-204, У-205 [3]
Список литературы
1. Коган Л.М. Полупроводниковые светоизлучающие диоды / М.: Энергоатомиздат, 1983. 208 с.
2. Коган Л.М., Гальчина Н.А., Рассохин И.Т., Сощин Н.П., Варешкин М.Г., Юнович А.Э. Спектры излучения осветителей белого свечения и осветители на их основе // Светотехника, 2005. № 1. С.15 - 17.
3. Афанасьев В.Б., Гальчина Н.А., Коган Л.М., Рассохин И.Т. Светодиодные осветительные и светосигнальные приборы с увеличенным световым потоком // Светотехника, 2004. №6. С.52 - 56.
4. Лебедев О.А., Сабинин В.Е., Солк С.В. Полимерная оптика для светоизлучающих диодов // Светотехника. 2001. №5. С.18-19.
5. Косицкий В.М., Коган Л.М., Рассохин И.Т. Излучающий диод. А.С. СССР, №803772, 18.10.1979.- 5 с.