ПЛИС Xilinx семейства Virtex™

Каждый КЛБ имеет четыре сквозных линии — по одной на каждую ло­гическую ячейку. Эти линии используются как дополнительные входы данных, либо как дополнительные трассировочные ресурсы, не расходую­щие логические ресурсы.

 

4.3.4.  Арифметическая логика

Каждая ЛЯ содержит специальную логику ускоренного переноса, кото­рая обеспечивает наилучшую реализацию на ПЛИС различных арифмети­ческих функций. КЛБ содержит две отдельные цепи переноса — по одной на каждую секцию. Размерность цепи переноса — два бита на КЛБ.

Арифметическая логика включает в себя элемент, реализующий функ­цию исключающего ИЛИ, который позволяет реализовать однобитовый сумматор в одной логической ячейке.

В каждой логической ячейке имеется элемент, реализующий функ­цию И (AND), который предназначен для построения быстродействую­щих умножителей.

Специальные трассы логики ускоренного переноса могут также исполь­зоваться для каскадного включения функциональных генераторов при необ­ходимости создания функций с большим количеством входных переменных.

 

4.3.5.  Буферы с тремя состояниями

Каждый КЛБ Virtex содержит два буфера с тремя состояниями, кото­рые нагружены на внутренние шины (см. также п. 4.4.4 «Специальные трассировочные ресурсы»). Каждый буфер BUFT имеет независимый вход управления с третьим состоянием и независимый входной контакт.

4.3.6.  Блочная память (Block RAM)

В FPGA Virtex встроена особая блочная память (Block Select RAM) большой емкости. Она создана в дополнение к распределенной памяти не­большой емкости (Select RAM), реализованной на таблицах преобразова­ния (Look Up Table RAM — LUTRAM).

Блоки памяти Block Select RAM+ организованы в виде столбцов. Все устройства Virtex содержат два таких столбца, по одному вдоль каждой вертикальной стороны кристалла. Эти колонки увеличивают полный раз­мер кристалла. Каждый блок памяти равен по высоте четырем КЛБ, таким образом, микросхема Virtex, имеющая 64 КЛБ по высоте, содержит 1-6 бло­ков памяти на колонку и 32 блока памяти в целом. В Табл. 5 приводятся ем­кости блочной памяти для различных кристаллов Virtex.


Таблица 5. Емкость блочной памяти.

Кристалл Virtex

Число блоков

Общий объем блочной памяти [бит]

XCV50

8

32 768

XCV100

10

40 960

XCV150

12

49 152

XCV200

14

57 344

XCV300

16

65 536

XCV400

20

81 920

XCV600

24

98 304

XCV800

28

114 688

XCV1000

32

131 072


Каждый блок памяти, как показано на Рис. 6, это полностью синхронное двухпортовое ОЗУ с независимым управлением для каждого порта. Размер­ность шины данных для обоих портов может быть сконфигурирована незави­симо, что позволяет создавать преобразователи размерности шины. В Табл. 6 показаны возможные соотношения размерностей шин данных и адреса.

В кристаллах Virtex созданы специальные трассировочные ресурсы для связи блочной памяти с блоками КЛБ и другими блоками памяти.

 

 

Таблица 6. Соотношение шин адреса и данных

Разрядность

Глубина

Шина адреса

Шина данных

1

4096

ADDR<11:0>

DATA<0>

2

2048

ADDR<10:0>

DATA<1:0>

4

1024

ADDR<9:0>

DATA<3:0>

8

512

ADDR<8:0>

DATA<7:0>

16

256

ADDR<7:0>

DATA<15:0>


4.4. Программируемая трассировочная матрица

Быстродействие проекта, рассчитанного для наихудшего случая, огра­ничивает величина задержки для наиболее длинной трассы. Поэтому архи­тектура трассировочных ресурсов и программы размещения и трассиров­ки создавались с учетом использования их в едином процессе оптимиза­ции. Этот совместный процесс оптимизации минимизирует наиболее длинные пути и, таким образом, создает проект с наилучшей системной производительностью.

Кроме того, совместная оптимизация сокращает время компиляции, так как программное обеспечение и архитектура микросхемы создавались с учетом на­илучшего взаимодействия. Циклы проектирования, таким образом, сократи­лись благодаря более коротким временам каждой из итераций всего процесса.

4.4.1. Локальные связи

Как показано на Рис. 7, в кристалле Virtex созданы локальные трасси­ровочные ресурсы, называемые VersaBlock. Они позволяют реализовать три типа соединений:

1.           Связи между таблицами преобразования (LUT), триггерами и глав­ной трассировочной матрицей (ГТМ).

2.                            Внутренние обратные связи КЛБ, которые создают высокоскорост­ные связи с таблицами преобразования в рамках одного КЛБ и позволяют соединять их в виде цепочек с минимальными задержками распростране­ния сигналов.

3.                            Прямые трассы, которые создают высокоскоростные соединения с соседними по горизонтали КЛБ, избегая при этом больших задержек, при­сущих трассам ГТМ.



4.4.2. Трассировочные ресурсы общего назначения

Большинство связей в кристаллах Virtex реализуются с помощью трас­сировочных ресурсов общего назначения, и, следовательно, большая часть ресурсов межсоединений связана с этим типом трассировочной иерархии. Трассировочные ресурсы общего назначения расположены в виде горизон­тальных и вертикальных трассировочных каналов и размещены в непосредственной близости от строк и столбцов матрицы, образованной блока­ми КЛБ. Ниже перечислены эти ресурсы:

• Примыкающая к каждому КЛБ главная трассировочная матрица (ГТМ) — это матрица переключателей, с помощью которых комму­тируются горизонтальные и вертикальные трассы и посредством кото­рых блоки КЛБ получают доступ к трассировочным ресурсам общего назначения.

• ГТМ связана в каждом из четырех направлений с соседней ГТМ посредством 24 трасс одинарной длины.

• 96 буферизованных НЕХ-линий трассируют сигналы ГТМ к шести другим ГТМ в каждом из четырех направлений. НЕХ-линии органи­зованы в виде зигзагообразных линий. НЕХ-линии могут подклю­чаться к источникам сигнала только в своих конечных точках или се­рединных (три блока от источника). Одна третья часть НЕХ-линий является двунаправленными, в то время как остальные — однона­правленные.

• 12 длинных линий являются буферизированными, двунаправленными линиями, распространяющими сигналы в микросхеме быстро и эф­фективно. Вертикальные длинные линии имеют протяженность, равную полной высоте кристалла, а горизонтальные длинные линии — полной ширине.

4.4.3.  Трассировочные ресурсы для блоков ввода-вывода

Кристалл Virtex имеет дополнительные трассировочные ресурсы, располо­женные по периферии всей микросхемы. Эти трассировочные ресурсы форми­руют добавочный интерфейс между КЛБ и БВВ. Эти дополнительные ресурсы, называемые VersaRing, улучшают возможности закрепления сигналов за кон­тактами и переназначения уже сделанного закрепления, если это требование на­кладывается расположением сигналов на печатной плате. При этом сокращает­ся время изготовления всего проекта, т. к. изготовление и проектирование печат­ной платы можно выполнять одновременно с проектированием FPGA.

4.4.4.  Специальные трассировочные ресурсы

Некоторые классы сигналов требуют наличия специальных трассиро­вочных ресурсов для получения максимального быстродействия. В уст­ройстве Virtex специальные трассировочные ресурсы создавались для двух классов сигналов:

• Горизонтальные трассировочные ресурсы создавались для реализа­ции микросхеме шин с тремя состояниями. Четыре разделенные ли­нии шин реализованы для каждой строки КЛБ, позволяя организовы­вать сразу несколько шин в пределах одной строки (Рис. 8).

Две специальные линии для распространения сигналов быстрого пе­реноса к прилегающему КЛБ в вертикальном направлении.



4.4.5. Глобальные трассировочные ресурсы

Глобальные трассировочные ресурсы распределяют тактовые сигналы и другие сигналы с большим коэффициентом разветвления по выходу на всем пространстве кристалла. Кристалл Virtex имеет два типа глобальных трасси­ровочных ресурсовтназываемых соответственно первичными и вторичными:

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать