Приборы выдачи измерительной информации

В приборах с цифровым роликом последний укреплен на поворотном магните трехкатушечного логометра и устанавливается в положение, соответствующее измеряемому значению, при по­мощи трех соединяемых звездой обмоток, переключаемых кодовым преобразователем.

Оптические цифровые показывающие приборы

В оптических цифровых показывающих приборах представление цифр осуществляется при помощи диапозитивов (проекционные цифровые показывающие приборы) или в виде цифр, выделяемых заливающим светом. Оба метода обладают крайне малым временем установления показаний по сравнению с механическими индикаторами.  Однако они не обеспечивают запоминания. Максимальная высота цифр около 10 см.

В проекционных цифровых указателях нанесенные на диапозитив цифры от 0 до 9 проецируются каждая своей лампочкой и системой линз на матовое стекло. Другой способ предусматривает использование заливающего света. При этом цифры гравируются ан передней пластине из оргстекла и освещаются лампой помещенной у ее торца. Каждой цифре соответствует собственная пластинка; пластинки установлены друг за другом и являются световодами; свет излучается только в местах гравировки цифр, которые при этом становятся видимыми.

Электронные цифровые приборы.

Электронные цифровые приборы применяют наиболее часто. Используются, в частности, газоразрядные указатели — газо­наполненные лампы с холодным катодом, указатели со свето-1иодами (LED) и указатели с жидкими кристаллами [LCD, li­quid-crystal display ].

В газонаполненных лампах с холодными катодами против сетчатого анода для каждой цифры установлен соответствующей конфигурации катод из тонкой проволоки.

Анод и десять катодов (от 0 до 9) размещены в пространстве друг за другом. Ввиду высокого рабочего напряжения при управ­лении полупроводниковыми элементами необходимо уделять особое внимание выбору размеров. В цифровых приборах со светодиодами (из арсенида галлия) цифры образуются из точечных или штриховых сегментов. Световое излучение возбуждается в результате полупроводникового эф­фекта: под действием подводимой электрической энергии носители зарядов перемещаются на более высокий энергетический уровень. После короткой выдержки они вновь возвращаются на низший энергетический уровень, Этот процесс сопровождается рекомбинацией электронов и дырок, при которой часть энергии отдается в виде излучения (фотонов).

Введение соответствующих примесей в материал полупроводников обеспечивает излучение в видимой области спектра. Могут поставляться материалы с излучением следующих цветов: оранжевым (240 мЛб*/'Вт), желтым (3б0 мЛб/Вт) и зеленым (150 мЛб/В ).

Индикаторы на жидких кристаллах применяются во многих областях. Эти соединения представляют собой соединения с углеродом и кислородом, которые ниже определенной температуры являются кристаллами, а выше этой температуры превращаются в жидкость.

Преимущества применения этих элементов заключается в том, что не надо применять энергию для вызова световой эмиссии, а достаточно энергии самого падающего света. Потребляемая мощность очень мала всего 4* 10-6 Вт/см2 .У индикаторов со штриховыми сегментами наибольшая высота цифр составляет около 18 мм. У элементов в виде матрицы размером 6х7 точек высота может составлять примерно 13 см. Рабочая температура от – 25 до 85 С.

Дискретно – аналоговые преобразователи.

Наиболее часто применяемыми способами являются следующие: дискретно-аналоговый (цифро-аналоговый) преобразователь со ступенчатым делителем омического сопротивления, дискретно аналоговый преобразователь со ступенчатым делителем (разветвлением) токов и дискретно-аналоговый преобразователь с це­почками сопротивлений. Менее употребительны способы с моду­ляцией продолжительности импульсов или с косвенным интегрирующим (суммирующим) преобразованием. Каждый дискретно-аналоговый преобразователь содержит следующие конструктивные элементы: переключатель аналоговых величин, блок (сетка) сопротивлений и источник опор­ного напряжения. В качестве переключателей применяют диоды:, транзисторы и теперь все чаще интегральные схемы. Блоки со­противлений состоят из проволочных или тонкослойных (пленоч­ных) резисторов или же из элементов толстопленочной техники. Источники опорного напряжения, выполненные на интегральных схе­мах, обеспечивают в настоящее вре­мя точность ±0,005 % .

ПЕЧАТАЮЩИЕ УСТРОЙСТВА ДЛЯ РЕЗУЛЬТАТОВ ИЗМЕРЕНИЙ

Решающее значение для расшифровки результата измерений имеет документирование и протоколирование измеренных данных при помощи соответствующих печатающих устройств. В связи со все более широким применением печатающих устройств в различных системах переработки информации — начиная от персональных компьютеров и кончая мощными ЭВМ — в технологии печатания 22 последние годы достигнут значительный прогресс. В частности применение микропроцессоров для управления различными функциями в печатающих устройствах позволило существенно расширить объем этих функций. Предложение различных печатающих устройств весьма широко, что видно уже по диапазону цен на них. Эти цены колеблются в пределах примерно от 1000 до 700 000 марок ФРГ.

Печатающие устройства могут быть подразделены на два класса: ударного и безударного действия. В печатающих устройствах ударного действия процесс печатания происходит в результате удара рычага с литерой или символом или игл (в матричных печатающих устройствах) на красящую ленту. Имеются следующие типы ударных печатающих устройств: с цилиндрической головкой, со сферической головкой с колесом в виде маргаритки (daisy-wheel), матричное, барабаня цепное и ленточное.

Скорость печатания устройств от 10 знаков в секунду до 2000 строк в минуту. В безударных печатающих устройствах процесс печатана заключается в физическом или химическом воздействии на специально подготовленную бумагу. Имеются следующие типы таких печатающих устройств: тепловые матричные, электрочувствительные, электростатические, ксерографические и лазерные, а также с непрерывной подачей краски и с подачей краски по требованию.

Скорость печатания здесь достигает от 300 до 45 000 строк в минуту. Далее показаны некоторые примеры примененных печатающие устройств для выдачи результатов измерений. Современные печатающие устройства отличаются высокой эффективностью в от ношении качества печати, быстроты печатания, выбора форматов (длины строк) и выбора различных шрифтов (нормальной прямого, курсивного, полужирного). Для управление этими функциями обычно применяется приборная схема с собственным «интеллектом» (микропроцессор). Интерфейс между системой переработки результатов измерений и этой приборной схемой обычно является параллельным восьмиразрядным, а интерфейс между приборной схемой и самим печатающим устройством является сериальным с постоянным током или же здесь приме­няется интерфейс типа v24/v28. Сериальная (последовательная) передача информации выполняется асинхронно по семиразряд­ному коду ИСО с одним разрядом контроля четности.

Процедура передачи система переработки результатов измере­ний — приборная схема — печатающее устройство осущес7вляется под контролем организационной программы (рис. 2.6—15). Чаще всего применяются матричные печатающие устройства, причем либо с игольчатым печатающим механизмом, либо с по­сылкой струи чернил (краски). В обоих вариантах применяется одинаковое матричное представление.

Для умеренных скоростей печатания (от 250 знаков в се­кунду до 200 строк в минуту) можно применить матричные пе­чатающие устройства, описанные в литературе 115, 161.

Для высоких скоростей печатания (около 600 строк в минуту) необходимы барабанные печатающие устройства.

Все печатающие устройства управляются по процедуре пере­дачи информации.

ЭЛЕКТРОННО-ЛУЧЕВЫЕ ВИЗУАЛЬНЫЕ ПРИБОРЫ

Электронно-лучевые визуальные приборы (дисплеи) вместе со своей клавиатурой представляют собой универсальные устройства для ввода и выдачи информации в системах переработки резуль­татов измерений. Наряду с алфавитно-цифровым вводом и вы­дачей текста они могут также наглядно показывать в графическом виде состояние процесса и ход изменения измеряемых величин. Возможны три метода:

растровый;

светового карандаша;

профильный.


 














При растровом способе, как и в телевизионной технике, вы­полняется развертка—электронный луч отклоняется по строч­кам и столбцам. В результате формирования светлых и темных мест при сканировании получаются отдельные точки изображения, воспроизводящие требуемую информацию.

При методе светового карандаша электронный луч, вызываю­щий свечение при сканировании, воспроизводит на экране после­довательности штрихов, отображающие требуемую информацию.

При профильном методе знаки (символы) изображаются масками.

В настоящее время -внедрен .преимущественно растровый метод, потому что для него могут быть использованы дешевые черно-белые и цветные мониторы. Имеются следующие возможности изображения: алфавитно-цифровой, полуграфический и полностью графический методы.

При всех трех методах изображения, как и в телевидении, исходят из тактового растр.

В отличие от метода чересстрочной развертки бытового теле­видения с двумя взаимно переплетающимися полуизображениями нередко оба полуизображения записывают одно над другим. Вместо 625 строк в таком случае имеется только 311 строк, из которых вследствие искажения у краев используют только 288 строк. Если каждая строка имеет разрешающую способность, например, 488 точек, то все изображение представляет собой матрицу, состоящую из 129 024 точечных изображений. Чтобы не нужно было запоминать каждую точку в отдельности, на матрицу точечных изображений накладывают полевую матрицу, состоящую из 32 строк и 64 столбцов. Каждое поле может адресоваться и состоит из 7х9 точек. В каждом поле может быть изображен алфавитно-цифровой знак или символ. Знаки или сим­волы хранятся в памяти знаков или символов и могут быть вызваны оттуда памятью воспроизведения изображений, которая содержит жит всю структуру изображения. При изображении кривых могут быть представлены семь кривых с 256 точками каждая с раз­решающей способностью по амплитуде в 255 ступеней.

Разрешающая способность при полу графическом изображении, которое показано выше, нередко оказывается недостаточной. В таком случае можно перейти к полностью графическому изобра­жению [181. Этим методом можно получать двухмерные (плоские) и трехмерные (объемные) изображения. Обычно применяют 512Х <512 точек изображения или в системах с высокой разрешаю­щей способностью 3024 X 1024 точек. Здесь тоже применяют растровый метод с тактовым растром.

Поскольку в память воспроизведения изображений должна быть заложена каждая точка изображения — а при 16 цветах это -ответствует объему информации в 4 мегабит — такие дисплеи стали экономичными только после того, как появились дешевые высокоинтегральные модульные блоки для ЗУ и быстродействую­щие графические процессора. Графический процессор раз­гружает центральную ЭВМ от графических операций, отнимающих много времени. Для этой цели он управляется программными командами высокого уровня, например draw line («начерти ли­нию»), draw arc («начерти дугу») и т.д. .Дополнительное контрольное устройство берет на себя задачи повторения изображений, запоминания новых изображений, освежения (актуазации) памяти воспроизведения изображений.

Простейшей задачей графического процессора является изображение какой-либо точки на экране. Для этого, однако, должно произойти отображение (mapping) физического уровня в память которая построена последовательно из слов по 16 бит (разрядов в логический адрес на дисплее (bit mapping).

С помощью «примитива» (элементарного оператора), например вычерчивания прямой, можно сформировать более сложные «примитивы». Для трехмерного изображения графических структур требуется дополнительная схемно-аппаратная часть, в которая осуществлялись бы алгоритмы с большим объемом операторов умножения. Требуется операционное время умножения 16х 16 разрядов порядка 65 нс. Около 500 конечных точек конечного изображения.

Литература:

·        Измерения в промышленности. Справочник

·        Сканирующие системы

·        Обеспечение метрологических измерений в электронике


Страницы: 1, 2



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать