Применение лазеров в связи и локации

Рассмотрим схемы устройств приема оптических сигналов, при­меняемых в обоих методах.

Основная схема при некогерентном методе приема — схема прямого усиления. При этом сигнал усиливается до детектора или без усиления сразу подается на фотодетектор.

Для усиления луча используется оптический квантовый усили­тель (ОКУ).

При когерентном методе приема оптический сигнал подвергается дополнительной обработке до фото детектора. Когерентный метод приема отличается высокой чувствительностью и малыми шумами. При использовании этого метода облегчается задача фильтрации, по­скольку она осуществляется на микроволновых, а не на оптических частотах. В том случае, когда в схемах когерентного метода прие­ма используется местный гетеродинный ОКГ, предъявляются жест­кие требования к юстировке гетеродина и стабильности его часто­ты. Более того, при одновременной подаче на фоточувствительную поверхность двух когерентных   оптических   сигналов   одинаковой поляризации фронты двух световых лучей должны иметь одинако­вую относительную фазу вдоль всего катода.

Блок-схема входной части супергетеродинного приемного уст­ройства показана на рисунке 1.5. Устройство состоит из собирательной линзы 1 для приема излучения лазера, местного гетеродинного ОКГ 2, полупрозрачного зеркала 3, фотодетектора 4 и радиотракта 5.

Рисунок 1.5 - Супергетеродинный приемник оптического диапазона


Приемлемое требование для степени не параллельности двух пучков света, падающих на детектор, может быть записано в виде

где — угол расхождения между двумя световыми пучками,  — длина волны несущих колебаний, D — апертура собирающей оптики детектора.

Основным недостатком супергетеродинного приема является возможность приема помехи на зеркальной частоте, отличающейся от несущей на удвоенную промежуточную частоту.

Предлагается устройство для супергетеродинного приема оп­тического сигнала, содержащего, кроме несущей частоты, две боко­вые частоты — верхнюю и нижнюю, в которых и заключена полез­ная информация. Таким образом, по зеркальному каналу вме­сто помехи приемник может принять одновременно два полезных сигнала. Блок-схема устройства показана на рисунке 1.6.


Рисунок 1.6 - Супергетеродинный  приемник со вспомогательными поднесущими


Устройство состоит из местного гетеродина - лазера 1, полярои­дов 2, плоскость поляризации которых показана штриховкой, рас­щепителя луча 3 с полупрозрачным зеркалом 4, двух фотодетекторов 5, фазосдвигающей цепочки 6, выходного сумматора 7 и чет­вертьволновой пластинки 8, на которой стрелкой показано направ­ление поляризации, соответствующей наибольшей скорости распро­странения волны. Входной луч через первый поляроид 2 попадает на смеситель 3.

На другую грань смесителя через второй поляриза­тор с плоскостью поляризации, повернутой на 90° относительно первого, падает луч лазера гетеродина 1. На выходе смесителя по­лучают два луча, каждый из которых содержит две компоненты, соответствующие входному и гетеродинному сигналам. Первый луч проходит через третий поляризатор, поворачивающий плоскость поляризации по часовой стрелке на 45°, и затем на свой фотодетек­тор 5, а второй через четвертый поляризатор и дополнительно че­рез четвертьволновую пластинку 4 также на свой фотодетектор 5. После фотодетектирования на выходе каждого фотоэлемента по­лучают сигнал промежуточной частоты, содержащий верхнюю и нижнюю боковые частоты. Если электрический сигнал от второго фотоэлемента подать на фазосдвигающую цепь (90°), то на вы­ходе сумматора будут выделены два напряжения: на одной клемме напряжение, пропорциональное сумме обоих сигналов, а на вто­рой — пропорциональное разности. В другом варианте приемника четвертьволновая пластинка ставится на пути лазера-гетеродина; после смесителя и поляризаторов лучи с помощью призм полного внутреннего отражения попадают на разные точки фотокатода од­ного фотоэлемента.

Данная схема позволяет   принимать полезную   информацию, передаваемую по основному и зеркальному каналам.

В приемниках с ЧМ особое значение приобретает стабилиза­ция местного гетеродина по частоте. Поскольку в настоящее время отсутствуют устройства для оптических частот аналогичные – частот­ным дискриминаторам на радиочастотах, то выделение информа­ции из ЧМ – сигнала осуществляется за счет биений, возникающих на нелинейном элементе при подаче на него ЧМ – сигнала и немодулированного и слегка сдвинутого по частоте сигнала лазера. Пред­ложен новый способ извлечения информации из частотно-модули­рованного оптического сигнала без применения гетеродинного метода приема. В такой системе вспомогательный немодулированный луч, частота которого сдвинута на некоторую величину, обра­зуется при расщеплении луча лазера – передатчика (рисунок 1.7).

На рисунке 1.7, а показана блок-схема передающей части системы, на рисунке 1.7, б — то же, приемной. Передающая часть системы содержит лазер-передатчик 1, ячейку Керра 2, сдвигающую частоту излучения; собирательную линзу 3; генератор вспомога­тельной частоты 4; модулятор на ячейке Керра 5 и источник инфор­мации 6. В приемную часть системы входят: собира­тельные линзы (антенны) 1, ФЭУ 2, сумматор 3, ограничитель 4, дискриминатор 5 и устройство воспроизведения 6. В месте приема информации оба луча совмещаются, и слож­ный луч направляется в приемник, где он попадает на не­линейный элемент. На выходе нелинейного элемента возни­кают сигналы со средней частотой, равной разности частот основного и вспомогательного лучей. Отклонение же от средней частоты определяется модулирующим сигналом.


Рисунок 1.7 – Приемник ЧМ – сигналов оптического диапазона

В результате все флуктуа­ции исходного источника света и наложенные на сложный луч во время движения его к приемнику оказываются скомпенсирован­ными.

Качество приема может быть значительно улучшено благодаря предварительному усилению света при помощи оптических кван­товых усилителей (ОКУ). Из всех типов ОКУ наиболее перспек­тивными считаются ОКУ бегущей волны, обладающие высоким коэффициентом усиления и широкой полосой. Однако в настоящее время ОКУ работают еще не на всех освоенных частотах оптичес­кого диапазона.

Один из недостатков ОКУ бегущей волны — нестабильность коэффициента усиления. В обычных ОКУ прямая и обратная бегу­щие волны имеют одинаковые частоты и при соответствующей дли­не активного вещества усилителя обе волны могут оказаться в фа­зе, что приведет к возникновению колебаний внутри усилителя. Для устранения этого нежелательного эффекта предложена новая кон­струкция ОКУ бегущей волны. Принцип работы нового ОКУ заключается в том, что в активном веществе усилителя возбужда­ются акустические бегущие волны, которые представляют собой для электромагнитной волны большое число перемещающихся неоднородностей. В результате прямая и обратная волны несколько отличаются по частоте, а ОКУ стабилизируется по коэффициенту усиления.

На оптических частотах применяются также устройства для параметрического усиления световых волн с помощью нелинейного кристалла, размещенного в резонаторе. С целью получения эффек­та усиления требуется соблюдение параллельности лучей сигнала и накачки, так как сигнал и накачка взаимодействуют во всем объ­еме нелинейного материала. Это условие не всегда выполнимо. Кроме того, возникает проблема выделения усиленного сигнала из луча. Предложена структура для усиления световой волны, в ко­торой волны сигнала и накачки падают на нелинейный кристалл под различными углами и взаимодействуют лишь в ограниченном объеме. Блок-схема усилителя изображена на рисунке 1.8.

Рисунок 1.8 – Параметрический усилитель оптического диапазона


Параметрический усилитель состоит из источника сигнала (ла­зера) 1, резонаторов 2 и 3, настроенных на частоту входного сиг­нала, диэлектрических рефлекторов 4 частично пропускающих свет для ввода и вывода сигнала и концентрации его в объеме, где проявляется эффект усиления, устройства для оптической накач­ж 5 и выходного каскада 6.

Для увеличения напряжения на выходе на фотоприемнике кон­центрируют световой поток возможно большей площади. Для этого целесообразно использовать длиннофокусные линзы. Для сни­жения потерь толщина линз выбирается минимальной. Изготовле­ние таких линз связано со значительными технологическими труд­ностями. В качестве тонких длиннофокусных линз применяют плоские стеклянные пластины, подвергающиеся механическому воздей­ствию, в результате которого их поверхность приобретает форму поверхности синусоидального цилиндра. При использовании в системе оптической связи совокупности таких пластин, ориенти­рованных друг относительно друга под углом Брюстера, потери на отражение практически исключаются и поглощение света из-за малой толщины пластин будет крайне незначительным. С техноло­гической точки зрения изготовление таких пластин не представ­ляет серьезных трудностей.


1.3.1 Детекторы оптического диапазона

Все детекторы можно подразделить на тепловые, реагирующие на суммарную мощность падающего излучения  и фотонные.

Тепловые детекторы в системах связи использовать нельзя, поскольку они реагируют на суммарную падающую мощность и не могут выделить информацию из модулированного потока излучения.

К фотонным детекторам относятся фотодетекторы с внешним и внутренним фотоэффектами. К детекторам с внешним фотоэффектом относятся электростатические фотоэлектронные умножители (ФЭУ), динамические ФЭУ со скрещенными полями, вакуумные фотоэлементы, фото – клистроны, фото – ЛБВ.

Большой интерес представляют фотодетекторы ЛБВ, в кото­рых фотоэлемент совмещен с усилителем бегущей волны. Эти при­боры имеют широкую полосу и представляют собой весьма пер­спективные демодуляторы оптических сигналов. Чувствительность их значительно выше, чем у других высокочастотных фотоэмис­сионных приемников. Поэтому большинство работ по фотоэмис­сионным приемникам посвящено именно фото – ЛБВ. Например, предлагается использовать фото – ЛБВ для когерентного приема оп­тических сигналов. Схема приемного устройства показана на рисунке 1.9.

Рисунок 1.9 – Приемник оптического диапазона с ЛЬВ

 

Устройство содержит источник входного сигнала 1, фильт­ры 2, отверстия 3 для ввода излучения на фотокатод 4, замедляю­щую систему 5, нагрузку фотоприемника 6, местный гетеродин оптического диапазона 7 и источники питания 8. Особенностью этого приемника является устройство фотокатода, выполненного в виде оптического резонатора. Фотокатод подвергается воздействию мо­дулированного сигнала, приходящего от внешнего источника, и сигнала местного гетеродина оптического диапазона. Поскольку характеристика фотокатода нелинейная, фототок содержит ком­поненты с комбинационными частотами, из которых в дальнейшем используются только компоненты разностной частоты. Фототок с помощью электронно-оптического устройства направляется во вторую секцию прибора, которая представляет собою обычную ЛБВ СВЧ – диапазона, где происходит усиление сигнала разност­ной частоты.

Страницы: 1, 2, 3, 4, 5



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать