Используя часть сферического или цилиндрического диодов, показанных на рис. 1, б и в, можно, очевидно, получить соответственно сходящийся аксиально-симметричный или ленточный пучок (рис. 4).
Очевидно, в таких пушках, если учесть рассеивающее действие линзы в области анодного отверстия, можно на выходе из пушки, в частности, получить параллельный пучок. Кроме того, плотность тока в пучке может значительно превышать плотность тока с катода (так называемая компрессия пучка).
Наибольшее распространение получила пушка Пирса с аксиально-симметричным сходящимся потоком — пушка сферического типа (рис. 4), которую мы, в основном, и рассмотрим.
Рис. 4. К рассмотрению пушки со сходящимся пучком. |
Полный ток сферического диода в режиме пространственного заряда может быть представлен выражнием:
(1)
где (-α)2 — функция Ленгмюра, зависящая от величины ρа=Rк/Rа (Rк и Ra — радиусы катода и анода). Плотность тока с катода, очевидно, равна:
(2)
Распределение потенциала между катодом и анодом, как ясно из (1), имеет вид:
(3)
Рис. 5. График функции Ленгмюра для сферического диода. |
где p=RK/R, причем R является текущей координатой, а р меняется от 1 до ра.
Для формирования сходящегося аксиально-симметричного пучка с использованием катода, имеющего вид участка сферы радиуса RK, необходимо, как и в предыдущем случае, заменить действие отбрасываемой части потока полем, образуемым фокусирующим электродом, имеющим потенциал катода, и анодом.
Форму электродов, обеспечивающую вдоль границы пучка распределение потенциала, соответствующее (3), подбирают, как описано ранее, на электролитической ванне с применением пластины из диэлектрика, имитирующей границу пучка. На (рис. 6) представлены конфигурации электродов, формирующих сходящиеся аксиально-симметричные потоки при различных ра и углах схождения Θ.
Рис. 6. Примеры конфигурации электродов пушек сферического типа при различных Θ и ра
Эквипотепциаль, соответствующая фокусирующему электроду, подходит к границе потока под углом 67,5°, остальные — под углом 90°.
|
На практике обычно выполняют электроды более простой формы, в той или иной степени аппроксимирующей контуры требуемых поверхностей (рис. 7 и 8)
Рис. 7. Пример практической конфигурации
электродов пушки сферического типа.
К — катод; ФЭ — фокусирующий электрод; а — анод.
|
Рис. 8. Пример пушки с простой конфигурацией электродов.
К — катод; ФЭ — фокусирующий электрод; а — анод.
В пушке сферического типа анодное отверстие также служит причиной появления рассеивающей линзы, и поэтому угол схождения пучка по выходу из пушки всегда меньше Θ — угла его схождения в пушке (рис. 9).
Вместо точки О, где должны сойтись продолжения крайних траекторий пучка, они сойдутся в точке О'. Легко увидеть, что О является мнимым изображением О'. Используя формулу тонкой рассеивающей линзы 1/f = 1/L2 - 1/L1, а также параксиальность пучка получаем: |
Рис. 9. К расчету действия анодной линзы в пушке сферического типа.
Величина f равна 4Ua/Ea. Так как Eb = 0.
Следовательно, величина
Окончательно:
Таким образом, отношение sinγ/sinΘ определяется только ρa=Rk/Ra и не зависит от других параметров пушки. Зависимость sinγ/sinΘ от ρa показана на рис.10. При ρa =1,45 sinγ/sinΘ = 0.
Следовательно, в этом случае при любых Θ электроны выходят из анодного отверстия, параллельно оси z, т. е. на выходе пушки получается параллельный аксиально-симметричный пучок. Если ρa >1,45, то пучок на выходе пушки будет сходящимся, если ρa <1,45, то расходящимся.
Рис. 10. Графики для расчета пушки сферического типа. |
Рассмотрим теперь элементы расчета пушки сферического типа. Ток части сферического диода /, образующего пушку, относится к полному току диода /Сф как , где - площадь катода, ограниченного углом Θ.Тогда, используя (2), получаем:
(4)
Если учесть, что , то (8-9) преобразуется к виду:
(5)
Следовательно, величина
(6)
Угол Θ определяется так
(7)
Кроме того, считая углы Θ и γ малыми и примерно равными их синусам и обозначая отношение , из выражения (6) получаем:
(8)
График функции F(pa) представлен на рис. 10. Тогда, если заданы требуемые ток пучка / и Uа, а также γ — угол наклона крайних траекторий пучка и rа — его радиус на выходе из пушки, можно из (8) определить F(pa), по которой определить ра и угол Θ рис.10, затем по простому геометрическому соотношению рис. 9 определяется Rа = ra/sin Θ, откуда легко определяется Rк и плотность тока на катоде.
В дальнейшем мы увидим, что при расчете пушки могут иметь место и иные исходные данные, вытекающие из задачи ее согласования с поперечно-ограничивающей системой, однако они в конечном счете могут быть связаны с величинами /, U, γ и rа.
Пушка цилиндрического типа, образованная частью цилиндрического диода (рис. 3,в), может, как указывалось, сформировать сходящийся ленточный (клиновидный) пучок. Рассмотрение и расчет такой пушки аналогичны приведенным для сферической пушки.
Диафрагма с круглым отверстием (формирующий электрод)
Представим себе весьма простую электроннооптическую систему (рис. 11,а), состоящую из двух плоских параллельных электродов с потенциалами U1, и U2 между которыми помещен третий электрод, имеющий круглое отверстие, — диафрагма радиуса R и потенциал Ua. Если R значительно меньше d1 и d2 — расстояний между плоскостями и диафрагмой, то вдали от нее электрическое поле будет однородным и его напряженность определится потенциалами соответствующих электродов и расстояниями между ними.
В некоторой же области вдоль оси z будет иметь место провисание эквипотенциалей из области с большей напряженностью поля в область с меньшей напряженностью.
Следовательно, в этой области однородное поле искажается. Из геометрических соображений ясно, что оно будет аксиально-симметричным, т. е. в области диафрагмы образуется электронная линза. Естественно, что это будет иметь место лишь в том случае, если выполняется соотношение:
Рис. 11. Собирающая линза—диафрагма.
Рис. 12. Рассеивающая линза—диафрагма.
При этом возможны два случая, иллюстрируемые на (рис. 11 и 12). В первом случае (рис. 11,а) величина Е1 в пространстве слева от диафрагмы меньше, чем величина Е2 справа от нее. Следовательно, при переходе области диафрагмы вдоль оси z скорость роста U(z) увеличивается (рис. 11 ,б). Величины U'(z) и U''(z) будут меняться с расстоянием по оси z согласно (рис. 11, в и г) соответственно. Таким образом, в этой линзе U''(z)>0, что свидетельствует о том, что линза собирающая. Оптический эквивалент такой электронной линзы может быть представлен в виде двояковыпуклой собирающей световой линзы (рис. 11,д).
Второй возможный случай (рис. 12) соответствует уменьшению E при переходе через область диафрагмы. Рассмотрение представленного на (рис. 12, б- г) характера распределения потенциала вдоль оси и его первой и второй производных показывает, что в данном случае мы имеем рассеивающую электронную линзу, оптический эквивалент которой представлен на (рис. 12,д).
Система формирования по принципу Пирса
(Электростатическая)
Представим себе сплошной безграничный электронный поток с плотностью тока j, распространяющийся в своеобразном триоде, состоящем из трех электродов (рис. 13,а). При этом потенциалы крайних электродов
Рис. 13. Распределение потенциала в ячейке системы электростатического формирования (а) и расчетная форма электродов (б).
равны U1, а потенциал среднего U0<U1, причем электроды прозрачны для электронов, например представляют собой сетки.
Очевидно, что распределение потенциала между электродами будет иметь вид, представленный на (рис. 12) с минимумом при z = 0.
Если теперь отбросить большую часть пучка, оставив только требуемых размеров аксиально-симметричный или ленточный пучок, то для его формирования необходимо подобрать форму электродов, создающих на границе пучка поле, удовлетворяющее тем же требованиям, что и поле в пушках Пирса. Это можно сделать в электролитической ванне тем же методом, что и при расчете пушек Пирса. Форма получающихся при этом электродов представлена на (рис. 13,б). Кромка низковольтного электрода подходит к границе пучка под углом 45°, что является характерным для систем данного типа. В такой системе можно получить пучок постоянного сечения. При этом ясно, что при увеличении длины системы будет возрастать и необходимая для ее работы разность потенциалов (U1—U0), что практически ограничивает протяженность пучка.
Для ее увеличения можно применить систему, составленную из ячеек, изображенных на (рис. 14). Наличие сеток в высоковольтных электродах ограничивает ток пучка из-за их перегрева, поэтому обычно сетки не применяются. Это приводит к расширению пучка при прохождении высоковольтных электродов аналогично тому, как это имеет место на аноде пушек Пирса.
Рис. 14. Электростатическая система формирования пучка по принципу Пирса. |
Строго говоря, рассматриваемая система при отсутствии сеток перестает быть системой типа Пирса и имеет отличное по сравнению с пушками Пирса распределение потенциала вдоль границы пучка. Появляются радиальные силы и как следствие этого — пульсации. Для уменьшения этих эффектов увеличивается диаметр диафрагм в электродах и корректируется их форма.
Современное применение пушек для создания интенсивных электронных пучков
Плавка
Применение
тугоплавких металлов приобретает все возрастающее значение в развитии науки и
техники - атомной энергетике, авиационной и ракетной технике, химической промышленности
и многих других. За последние десятилетия в технологии редких и тугоплавких металлов
получили широкое распространение методы плавления в вакуумных электропечах
разнообразной конструкции - индукционных, дуговых, электронно-лучевых. В
институте Гиредмет разработан и нашел промышленное применение способ получения
ниобия, тантала и других тугоплавких металлов восстановлением их пятиокисей алюминием,
так называемый алюминотермический метод восстановления с последующей вакуумной
плавкой. В 1998 - 1999 годах была создана электронно-лучевая установка для
плавки ниобия и других тугоплавких металлов, полученных методом алюминотермического
восстановления.
Установка работает следующим образом: исходный
материал - дробленые куски ниобий-алюминиевого сплава в количестве 55-65 кг, загружается в ванну медного водоохлаждаемого кристаллизатора и после электронно-лучевого переплава
получается плоский слиток - полуфабрикат с размерами 20х200х2000 мм, пригодный
для дальнейшей переработки. На установке применяется электронная двухкаскадная
пушка аксиального типа. Танталовый катод разогревается электронной
бомбардировкой от разогретой вольфрамовой спирали - первый каскад. Образующийся
пучок электронов разгоняется в катод-анодном промежутке напряжением второго
каскада и направляется на исходный материал, находящийся в кристаллизаторе.
Лучеводы электронной
пушки снабжены фокусирующими магнитными линзами, системой управления электронного
пучка.
Камера пушки имеет поперечный вакуумный затвор,
позволяющий отсекать ее объем от рабочего объема установки. Откачка объема
пушки производится отдельной вакуумной системой. Высоковольтная часть пушки
закрыта защитным кожухом с блокировкой. В конструкции установки предусмотрена
блокировка по высокому напряжению в случае ухудшения вакуума в рабочем объеме. С
помощью автоматической системы управления электронный пучок в процессе плавки
сканирует в пределах ширины ванны кристаллизатора, а сам кристаллизатор
перемещается в продольном направлении со скоростью 8 - 30 мм/мин с помощью электромеханического
привода.
Сварка
Классификация
технологических приемов сварки и ремонта швов электронным пучком. По степени изученности
и применяемости известные технологические приемы сварки можно разделить на три
группы.
К первой относятся наиболее изученные и широко применяемые в промышленности
приемы: развертка и наклон электронного пучка; модуляция тока электронного
пучка; подача присадочного материала; применение подкладок; сварка смещенным и
расщепленным электронным пучком; выполнение прихваток, предварительных и
"косметических" проходов; сварка секциями.
Вторая группа включает приемы, хорошо изученные в лабораторных условиях,
но не получившие пока практического применения: "тандемная" сварка;
сварка в узкий зазор; сварка "пробковыми" швами.
В третью группу входят приемы, целесообразность или возможность реализации
которых недостаточно обоснована: оплавление корневой части шва
"проникающим" электронным пучком; осцилляция уровня фокусировки
электронного пучка; применение флюсов; сварка с использованием широкой вставки;
сварка с дополнительным теплоотводом; двухсторонняя сварка; вибрация
свариваемого изделия; ввод ультразвуковых колебаний в сварочную ванну.
По типам физического воздействия технологические приемы делят на четыре
группы: управление пространственно-энергетическими параметрами электронного
пучка (периодическое и статическое отклонение, модуляция токов электронного пучка
и фокусирующей линзы); применение дополнительных конструктивных элементов и
материалов (подкладки, вставки, накладки, наплавки, теплоотводящие элементы, присадки,
флюсы); специальные сварные швы (дополнительные проходы, прерывистые швы,
дополняющие швы); механическое воздействие на сварочную ванну (вибрация
изделия, ввод ультразвуковых колебаний).
Список литературы:
- Л. Г. Шерстнев. «Электронная оптика и электронно-лучевые приборы» Учебник для студентов высших технических учебных заведений, - Москва, «Энергия», 1971г.
- А.А. Жигарев, Г.Г. Шамаева. «Электронно-лучевые и фотоэлектронные приборы» Учебник для вузов. – Москва : Высшая школа, 1982 г.
- Данные о новейших разработках взяты с сайта www.seo.ru
Страницы: 1, 2