Расчёт супергетеродинного приёмника ДВ, СВ волн

6±0,6

60*25

50


Выбор типа схемы и транзисторов для выходного каскада:

В качестве оконечных каскадов усилителей низкой частоты можно использовать как однотактные, так и двухтактные схемы. Схема выходного каскада определяется назначением усилителя и требованиями, предъявляемыми, к нему. Так как у моего усилителя Рвых=0,150Вт, то я выбираю двухтактный каскад в режиме класса АВ на маломощных транзисторах.

Выбор транзисторов производится, исходя из следующих соображений:

1.    предельно допустимая мощность рассеяния на один транзистор Ркмакс должна превышать рассеиваемую на коллекторе мощность Рк, которую можно вычислить по формуле:

Рк=0,4*Рн’/ ηунч *ξ², где

Рн’=Рн/2-номинальная мощность, заданная по условию, приходящаяся на один транзистор.

Рк-мощность рассеиваемая на коллекторе транзистора.

ηунч-КПД выходного каскада =1

ξ-коэффициент использования коллекторного напряжения=0,8÷0,95; выбираю 0,9

Рн’=0,150/2=0,075Вт=75мВт

Рк=0,4*0,075/1*0,9²=0,037Вт≈37мВт

Выбираю транзистор: КТ315А, у которого Ркмакс=150мВт;  Екмакс=25В

2.     Проверяю выполнение условия:

Ек≤(0,3÷0,4)Екмакс

6В≤(0,3÷0,4)*25=7,5÷10

Условие выполняется, следовательно, транзистор выбран правильно.

Выбор транзисторов для каскадов УННЧ:

В большинстве случаев каскады УННЧ могут быть выполнены на маломощных транзисторах. При этом, если усиливаемые частоты не превышают единиц килогерц, выбор транзисторов производится по низкочастотным параметрам из следующих соображений:

1.     минимальной стоимости;

2.     наибольшей величины коэффициента усиления (В) в схеме с общим эмиттером.

Выбираю транзистор КТ315Б т.к. он дешевый и имеет большёй коэффициент усиления.

Таблица№12:

Тип

Тракт

Ikmax,ma

Pkmax, mBt

Ukэ, В

fгр

h21э

КТ315А

УНЧ

100

150

25

100

20÷90

КТ315Б

УННЧ

100

150

20

100

50÷350




1.2.13.Обоснование структурной схемы приёмника по результатам эскизного расчёта. 

На основании проведённого мной эскизного расчёта приёмника я составляю его блок-схему с указанием числа каскадов и особенностей каждого тракта.

В этой схеме входная цепь приёмника с магнитной антенной содержит два поддиапазона: поддиапазон километровых волн (ДВ) и поддиапазон гектометровых волн (СВ). Связь контура входной цепи с транзистором преобразователя частоты трансформаторная. Преобразователь частоты (ПЧ) собран по схеме с отдельным гетеродином. Нагрузкой в цепи коллектора служит 4 звена ФСС ПФ1П-2, связь ФСС с выходом смесителя и входом УПЧ индуктивная. Первый каскад УПЧ собран по апериодической схеме, второй широкополосный, одноконтурный с частичным включением контура в цепь коллектора. Диодный детектор собран по последовательной схеме с разделённой нагрузкой. Для автоматической регулировки усиления используется схема АРУ с задержкой включенная в цепь эмиттера УПЧ собранного по апериодической схеме. Каскад УННЧ собран по резистивной схеме с непосредственным включением нагрузки, каскад УНЧ выполнен по безтрансформаторной схеме на одиночной паре комплементарных транзисторов.       




 

 

    






 













   1.3    Расчётная часть проекта:

1.3.1 Подробный расчёт каскада АД:

Требования, предъявляемые к АД, сводятся к обеспечению следующих качественных показателей:

·        возможно большего коэффициента передачи, который определяется отношением напряжения НЧ на выходе детектора к напряжению ВЧ на его входе;

·        возможно меньших частотных и нелинейных искажений;

·        возможно большего входного напряжения;

·        возможно меньшего ВЧ напряжения на его выходе.

Расчёт детектора сводится к выбору схемы и ее элементов так, чтобы перечисленные требования удовлетворялись наилучшим образом.

Выбираю последовательный полу проводниковый детектор с разделённой нагрузкой, так как он удовлетворяет всем моим заданным требованиям, и обеспечивает регулировку уровня сигнала.

1.     Диоды рекомендуется выбирать исходя из условия:

Rобр>>Rн>>Rпр

Выбираю диод Д9Б, так как у него Rобр>>Rпр.

Определяю сопротивление нагрузки детектора:

Rн=2*Кд*Rвх, где Кд - коэффициент передачи детектора, так как Uвх.д=0,6В, то Кд=0,2÷0,4 выбираю Кд=0,4.

Rвх- входное сопротивление детектора 4,6кОм

 Rн=2*Кд*Rвх=2*0,4*4,6=3,68кОм.

2.     Так как сопротивление нагрузки детектора одного порядка с входным сопротивлением УНЧ, величины сопротивлений R1 и R2 определяю по номограмме 9.18 в учебнике В.Д. Екимова.

Получаю R2=1,6кОм.

Принимаю R2=1.5 кОм из ряда Е6, типа СП3-10М с выключателем.

Определяю R1=Rн-R2=3,68-1,5=2,18кОм.

Принимаю R1=2,2кОм из ряда Е6, типа МЛТ-0,25.

3.     Определяю общее сопротивление нагрузки переменному току:

4.     Определяю общее сопротивление нагрузки постоянному току:

                     Rн==R1+R2=2,2+1,5=3,7кОм

Так как Rн»/Rн==3,12/3,7=0,84>0,8 то нелинейные искажения не будут превышать нормы.

5.     Определяю величину эквивалентной ёмкости, шунтирующей нагрузку детектора:

        

6.     Определяю величину ёмкости С2, обеспечивающую фильтрацию на промежуточной частоте:

Принимаю С2=6800пФ

7.     Определяю величину ёмкости С1:

С1£Сэ-С2=18532,81-6800=11,732,81пФ

Принимаю С1=6800пФ

8.     Проверяется величина эквивалентной ёмкости:

Сэ’=C1+C2=6800+6800=13600пФ

Так как Сэ’=13600<Сэ=18532,81пФ, то расчёт выполнен правильно.









1.3.2. Подробный расчёт каскада УННЧ:

Для предварительного усиления выбираю резистивный каскад



Исходные данные для расчёта:

1. Полоса усиливаемых частот

Fн-Fв=300-3500Гц

2. Коэффициент частотных искажений на нижней частоте за счёт Сс

Мнс=1,5дб

3. Коэффициент частотных искажений на нижней частоте за счёт Сэ

Мнэ=1,5дб

4. Коэффициент частотных искажений на верхней частоте

Мв=1,5дб

5. Напряжение питания каскада

Ек=6В

6. Температура окружающей среды

T=00С¸+300C

7. Параметры транзистора следующего каскада

Iвх м сл=2мА

Uвх м сл=1,5В

Rвх Тр сл=4кОм

Ксл=20

Fгр мин=300кГц

Ск макс=10пФ

Rвх об сл=50кОм

R1сл=50кОм

R2сл=10кОм


1.     Определяю максимальный ток коллектора:

Rкор=0,4*Eк/Iк0=0,4*Eк/1,5*Iвхмсл=0,4*6/1,5*0,002=800Ом

Iкм=Iвхсл+(Uвхмсл/R2сл)+(Uвхмсл/Rкор)=0,002А+0,8/10000+0,8/800=   0,002А+0,00008А+0,001А=0,00308А=3,08мА

2.     Определяю Ik0:

Ik0=(1,05¸1,2)*Ikm=3,234мА¸3,696мА, выбираю 3,5мА

3.     Так как в пункте 1.2.12. я выбрал транзистор КТ315Б, то выписываю его параметры:

Iк макс

bмакс

bмин

Uкэмакс

fгр

Uкэ0

Rмм

Ск

100мА

350

50

30В

100МГц

15В                                                                                                                                                                                   

670 0С/Вт

7пФ


4.     Рассчитываю сопротивления Rэ и Rк:

Rк=0,4*Ек/Iк0=0,4*6В/3,5мА=685,71Ом

Rэ=0,2*Ек/Iк0=0,2*6В/3,5мА=342,85Ом

Принимаю

Rк=1кОм по ряду Е24 типа МЛТ- 0,125

Rэ=360Ом по ряду Е24 типа МЛТ- 0,125

5.     Рассчитываю напряжение Uкэ0:

Uкэ0=Ек-Iк0*Rк- Iк0*Rэ=6В-3,5мА*1000Ом-3,5мА*360Ом=6В-3,5В-1,26В=1,24В

6.     По статическим характеристикам транзистора для значений Uкэ0 и Iк0 нахожу методом треугольника:

Uкэ0

Ik0

Страницы: 1, 2, 3, 4, 5, 6



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать