Разработка анализатора спектра речи

Очевидно, что в таком приборе лучше всего иметь автономное питание — это позволит исключить наводки передатчика на смеситель по цепям питания, а также наводки с частотой сети (они попадают в полосу пропускания селективных каскадов) от сетевого трансформатора.

Принципиальная схема прибора





Один из возможных вариантов схемного решения селективного ВЧ милливольтметра на основе приемника прямого преобразования показан на рис. 4.

 

Прибор предназначен для анализа спектра SSB передатчиков в диапазоне 7 МГц. С входного разъема X1 сигнал передатчика поступает через регулируемый аттенюатор (резистор R1) и развязывающий аттенюатор (R2 - R4) на кольцевой смеситель (диоды V1 - V4). Нагрузка гетеродина — низкоомная (смеситель на диодах), поэтому между генератором (транзистор V6) и смесителем введен эмиттерный повторитель на транзисторе V5. Он работает при относительно большом токе эмиттера (около 30 мА), что обеспечивает малые искажения формы сигнала гетеродина.


 Низкочастотный сигнал с выхода смесителя проходит через два фильтра нижних частот (LC-фильтр на элементах C2L1C3 и активный, 2-го порядка, на операционном усилителе А1). Коэффициент передачи активного фильтра в полосе прозрачности выбран равным единице. Оба фильтра имеют частоту среза около 100 Гц и вместе обеспечивают крутизну ската амплитудно-частотной характеристики прибора примерно 20 дБ на октаву. На выходе активного фильтра включен низкочастотный милливольтметр переменного тока на операционном усилителе А2. Милливольтметр имеет несколько пределов измерения, которые выбирают переключателем S1.

   Суммарная амплитудно-частотная характеристика обоих фильтров и милливольтметра приведена на рис. 9.

При указанных на схеме номиналах элементов полоса пропускания по уровню — 3 дБ составляет примерно 80 Гц, а подавление сигналов, отстоящих от частоты среза ФНЧ на 800 Гц достигает 50...60 дБ. Как уже отмечалось, из-за зеркального канала приема полоса пропускания со входа милливольтметра в два раза больше (около 160 Гц), а сквозная АЧХ имеет провал точно посередине, в области нулевых биений между сигналами передатчика и гетеродина приемника.


Максимальный завал АЧХ в области низших частот определяется емкостью конденсатора С22 и сопротивлением резистора R26. На других пределах этот завал будет меньше, чем показано на рис. 5.

Питание прибора двуполярное, напряжением ±9 В, осуществляется от четырех батарей 3336 Л. Светодиод V9 служит индикатором включения прибора. Ток, потребляемый милливольтметром от источников питания, составляет примерно 40 мА и определяется в основном эмиттерным повторителем в гетеродине.

Поддиапазоны измерений в низкочастотном милливольтметре отличаются друг от друга в 3,16 раза, т.е. на 10 дБ. Это дает возможность при измерениях пользоваться одной, отградуированной в децибелах шкалой микроамперметра .


                             

                                                   Конструкция прибора


Большинство деталей селективного ВЧ милливольтметра собрано на печатной плате, которая показана на рисунке.


 Плата рассчитана под установку следующих деталей:

резисторы — МЛТ-0,125;

конденсаторы (кроме электролитических) — КМ;

электролитические конденсаторы — К53-1;

дроссель L1 - Д1,3;

дроссель L2 - Д0,1;

кварцевый резонатор в корпусе Б1.


 Трансформатор Т1 намотан проводом ПЭВ-2 0,3 (каждая обмотка — 13 витков) на кольцевом магнитопроводе типоразмера К7Х4Х2 из феррита с начальной и магнитной проницаемостью 400...600. Намотку ведут одновременно тремя проводами: начало и конец одного из них — обмотка I, соединенные вместе начало и конец оставшейся пары — средняя точка обмотки II. Провода перед намоткой можно свить вместе, но можно подготовить их к намотке и другим способом. Болванку (из любого материала — металла или диэлектрика) подходящего диаметра (так чтобы длина окружности была не меньше требуемой длины провода обмоток с учетом выводов) обматывают лентой из тефлона. Поверх нее наматывают плотно виток к витку (всего не менее трех витков) провод требуемого диаметра и, закрепив его копии, несколько pas промазывают обмотку тонким слоем клея («Суперцемент», «Момент» и им подобные). Перед нанесением очередного слоя клея необходимо убедиться, что предыдущий слой уже высох (не прилипает к пальцам). Затем обмотку перерезают в одном месте по образующей болванки и снимают получившийся плоский жгут. Он отстает от болванки свободно, так как клей практически не держится на тефлоне. Отделив полоску из трех проводов, наматывают таким плоским жгутом трансформатор Т1.


Диоды V1-V4, V7 и V8 - любые современные кремниевые высокочастотные диоды (КД503 и т. п.). Операционные усилители могут быть также практически любые (кроме К1УТ401 и К1УТ402). Разумеется при замене ОУ придется соответствующим образом изменить цепи коррекции и конфигурацию проводников печатной платы прибора. Кварцевый резонатор — на любую частоту в пределах любительского диапазона 7 МГц. В качестве L2 можно использовать, например, корректирующие дроссели индуктивностью 150... 320 мкГ от ламповых черно-белых телевизоров. При отсутствии стандартного дросселя индуктивностью 5 Г его можно намотать на Ш-образном магнитопроводе от низкочастотного трансформатора. Полевой транзистор V6 — любой из серий КП303 и КП302. Вместо транзистора КТ606 подойдут маломощные транзисторы КТ312 и им подобные в металлических корпусах. При такой замене к корпусу транзистора следует припаять легкоплавким припоем небольшую металлическую пластину — радиатор.

Микроамперметр РА1 может быть на ток полного отклонения 50...200 мкА с сопротивлением рамки в пределах 500... 1500 Ом. Указанные на схеме номиналы резисторов R26 — R30 являются исходными для прибора М24 на 100 мкА (сопротивление рамки 820 Ом). Печатную плату и остальные детали (батареи, конденсатор С22 и т. д.) размещают в металлическом корпусе размерами примерно 200 х 120 х 120 мм. Внешний вид прибора в корпусе и расположение органов управления на его передней панели показаны здесь.

                                      

                                   Работа с анализатором спектра.

 

Для проверки передающей SSB аппаратуры и анализа спектра ее выходного сигнала собирают установку, функциональная схема которой показана на рис. 6 в тексте (ДТГ — двухтональный генератор, ПЕР — исследуемый передатчик, R — эквивалентантенны, ОСЦ — осциллограф, АС — анализатор спектра).

Уровень сигнала генератора устанавливают таким, чтобы получить максимальный неискаженный (по осциллографическому контролю) сигнал передатчика. Часть этого сигнала снимается с делителя на резисторах R' и R", образующего эквивалент нагрузки, и подается на анализатор спектра. Уровень ВЧ напряжения, необходимый для нормальной работы прибора,составляет 2...20 В. Установив переключатель пределов измерения в положение «0 дБ», а ручку «Уровень» в среднее положение, изменением частоты ГПД передатчика добиваются максимального отклонения стрелки измерительного прибора (при необходимости регулируют ручкой «Уровень» поступающий на анализатор спектра сигнал). При перестройке ГПД должны наблюдаться два максимума, соответствующие выходному двухтональному сигналу. Максимумы эти «двойные», поскольку АЧХ анализатора, как уже отмечалось, имеет провал. Уровни этих двух составляющих могут несколько отличаться из-за неравномерности АЧХ микрофонного усилителя, (в них нередко умышленно ослабляют низшие частоты), а также АЧХ фильтра передатчика. В этом случае регулировкой уровня одного из НЧ сигналов генератора следует добиться того, чтобы амплитуды этих составляющих были по возможности близкими. Затем регулировкой чувствительности анализатора устанавливают стрелку измерительного прибора на деление «0 дБ».


Незначительно изменяя частоту ГПД «подводят» к рабочей частоте анализатора интермодуляцнонную составляющую и регистрируют ее уровень (не трогая ручки «Уровень», а лишь переключая пределы измерения). Отсчет производят по шкале прибора и по положению переключателя пределов. Так, если переключатель находится в положении «—20 дБ», а стрелка прибора находится на делении « — 8 дБ», то уровень данной интермодуляционной составляющей по отношению к уровню двухтонального сигнала будет — 28 дБ. На практике обычно измеряют только составляющие 3-го и 5-го порядков.


Следует отметить, что анализ спектра передатчика, равно как и осциллографический контроль формы сигнала позволяют лишь наладить SSB аппаратуру, определить, в частности, предельные пиковые уровни выходного сигнала. В дальнейшем нормальная работа аппаратуры должна обеспечиваться либо эффективными автоматическими регулировками (ALC), либо постоянным контролем выходного уровня пиковыми индикаторами, из которых самым простым и надежным является обыкновенная неоновая лампочка.








Функциональная схема анализатора спектра представлена на рис.10:


Вырабатываемое при измерениях датчиком неравномерности вращения напряжение Ис поступает на один из входов балансного смесителя 1; на другой его вход подается напряжение Иг от гетеродина 2. Преобразованный смесителем сигнал усиливается резонансным усилителем 3, выполненным на электромеханических фильтрах и работающим на промежуточной частоте Fп4=Fг-Fcj=1900 Гц, где Fг , Fcj - частоты гетеродина и j -той гармоники входного сигнала.

Гармонические сигналы с выходов усилителя 3 и гетеродина 2 воздействуют на входы фазовращателей 4,5,67. Первые два из них осуществляют сдвиг колебаний по фазе на +450, а последние два - на -450. Создаваемые фазовращетелями напряжения Ип41, Иг1, Ип42 и Иг2 поступают соответственно на входы кольцевых смесителей 8 и 9, выходные сигналы которых суммируются в блоке сложения10. При этом получается практически напряжение синусоидальной формы с частотой, равной F=Fг-Fп4= Fcj. Его измерение производится с помощью индикаторного устройства11. Частотная шкала гетеродина проградуирована в единицах частот входного сигнала.

Смесители 1,8 и 9 выполнены по резистивно-диодным схемам.

Для анализатора спектра характерны достаточно большая помехоустойчивость и высокая разрешающая способность по частоте.

    Анализатор спектра предназначен для визуального наблюдения спектра используемых сигналов. Эти приборы различаются по способу проведения анализа - последовательного, одновременного и смешанного действия, по схемному решению - одноканальные и многоканальные, по диапазону частот – низкочастотные, высокочастотные, сверхвысокочастотные, широкодиапазонные. Чаще других при измерениях пользуются анализаторами с последовательным и одновременным анализом. Параметры анализаторов спектра, такие, как диапазон рабочих частот, чувствительность, погрешности измерения, приводятся в технических паспортах. Чаще других при измерениях пользуются анализаторами с последовательным анализом.

   Анализаторы спектра с последовательным анализом содержат или перестраивающийся фильтр или перестраивающийся гетеродин. В первом случае исследуемое напряжение через входное устройство поступает на перестраивающийся узкополосный фильтр, настройка которого изменяется, проходя последовательно весь исследуемый спектр частот. Выходное напряжение фильтра после детектирования фиксируется регистрирующим устройством.


Рис. 1. Структурная схема анализатора спектра последовательного действия


  Речь – это процесс, частотный спектр которого находится в пределах от 50…100 до 8000…10000 Гц. Установлено, что качество речи остается весьма удовлетворительным, если ограничить спектр снизу и сверху частотами 300 и


  3400 Гц. Эти частоты приняты Международным союзом электросвязи (МСЭ)

в качестве границ эффективного спектра речи. При указанной полосе частот

сохраняется хорошая разборчивость речи и удовлетворительная натуральность ее звучания.

  Усиленные области спектра называются формантами. Звуки речи различных людей  отличаются числом формант и их расположением в частотном спектре. Отдельные звуки могут иметь до шести формант, из которых только одна или две являются определяющими. Они обязательно находятся в диапазоне частот 300…3400 Гц. Между формантами лежат менее  мощные составляющие звуковых частот. Однако именно они придают голосу каждого человека индивидуальность, позволяющую узнать говорящего.

   Разработаем анализатор спектра речи в среде MATLAB 7.01. В качестве входного сигнала возьмем женский голос. В библиотеке Simulink  находим необходимые блоки: Signal Processing Sources, Signal Management / Buffers, Estimation / Power Spectrum Estimation, Signal Processing Sinks.





Спектр сигнала выглядит следующим образом:







                                                       Литература.




1. http://ru3ga.qrz.ru/

2. Шульгин Г. Двухтональный генератор.— "Радио", 1981, № 4, с. 19—20.

3. Ganter Schwazbeck, SSB—QRM,— Es Slaml in tier cq - D1, Band 1 (1972—1977). DARС е. V.

4. Поляков В. Приемники прямого преобразования.— Москва, изд-во ДОСААФ GC'GP, 1981.

5. www.monumental.com/rshorne/gram.html Взять программу можно там же, на «Паяльнике» в разделе «Приборы/ Спектроанализаторы» (http://payalnik.hypermart.net, 245 кб)


6. интернет-источник: www.схem.net


Страницы: 1, 2, 3, 4, 5, 6



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать