Разработка и исследование модели отражателя-модулятора

Сопротивление излучения определяется формулой:

,                                    (2.6)

Расчётная формула RS для симметричного вибратора сложна и мало пригодна для инженерных расчётов. Это связано со сложностью интегрирования вектора Пойнтинга по сферической поверхности даже в тех случаях, когда подынтегральная функция, пропорциональная квадрату диаграммы направленности, сравнительна проста. Поэтому на практике пользуются готовым результатом расчёта (см. табл.2.1. и рис 2.1).

Таблица 2.1. Значения сопротивления излучения.

l/l

RSП,Ом

l/l

RSП,Ом

l/l

RSП,Ом

0,125

6,4

0,325

144

0,525

185

0,150

13

0,350

168

0,550

166

0,175

23

0,375

187

0,575

145

0,200

36

0,400

200

0,600

121

0,225

54

0,425

209

0,625

105

0,250

73,1

0,450

212

0,650

93

0,275

96

0,475

210

0,675

87

0,300

120

0,500

199

0,700

85


Рис. 2.1. Зависимость сопротивления излучения симметричного вибратора от его длины.

Входное сопротивление симметричного вибратора определяется через напряжение и ток на входе антенны. Поскольку мы считаем закон распределения тока и напряжения известным из теории длинных линий с потерями, то, очевидно, что для расчёта входного сопротивления мы должны использовать ту же самую теорию. Поэтому расчёт ведётся по известной формуле для длинной линии с затуханием:

где – волновое сопротивление эквивалентной двухпроводной линии, заменяющей собой вибратор;

l – длина эквивалентной линии, равная длине одного плеча вибратора;

b и a - составляющие постоянной распространения в эквивалентной линии;

Надо сказать, что эквивалентное волновое сопротивление вибратора не совпадает с волновым сопротивлением W линии, выполненной из тех же проводов, что и вибратор. Известно, что волновое сопротивление линии с распределёнными параметрами определяется отношением погонной индуктивности и ёмкости (2.5) в предположении, что L1 и C1 постоянны на всём рассматриваемом участке линии. Но в симметричном вибраторе погонные L1 и C1 изменяются вдоль провода, и их отношение не обязательно должно оставаться постоянным. Поэтому при расчёте симметричного вибратора используется некоторое эффективное (усреднённое) волновое сопротивление, обозначенное через . В силу того, что распределение L1 и C1 по вибратору зависит от его длины, значение также оказывается зависящим от длины вибратора и равным:

                            (2.8)

где d – диаметр провода вибратора.

Постоянная распространения g=a-ib также определяется через эффективные распределённые параметры по формулам, аналогичным (2.3)-(2.5):

где                               

Точность равенства (2.10) зависит от величины коэффициента затухания b или точнее от отношения 2b/k.

В случае симметричного вибратора активные потери определяются сопротивлением излучения, которое зависит только от длины вибратора, и в свободном пространстве не может быть изменено, если электрическая длина антенны фиксирована и мало меняется. Поэтому добротность эквивалентного контура может быть изменена только за счёт характеристического сопротивления, то есть за счёт реактивных элементов. Последние (2.5) связаны непосредственно с волновым сопротивлением и, следовательно, с диаметром провода вибратора (2.8). Когда необходимо использовать симметричный вибратор в широкой полосе частот и требуется плавное и по возможности меньшее изменение ZВХ (малая добротность), прибегают к вибраторам со значительным поперечным сечением провода. При этом провод вибратора не обязательно должен быть круглым и сплошным, его можно выполнить из полой трубы или плоской ленты или аналогичных сетчатых металлических поверхностей.

2.3.Диаграмма направленности симметричного вибратора

Диаграмма направленности симметричного вибратора может быть получена с помощью метода, имеющего большое значение в теории и технике антенн и применяющегося для получения диаграмм направленности любых антенн. Метод предполагает распределение комплексной амплитуды тока по антенне  известным.

Рис.2.2. К выводу формулы поля симметричного вибратора.

В основе метода лежит принцип суперпозиции или наложения.

При выводе формулы диаграммы направленности антенна рассматривается как совокупность элементарных излучателей, поля от которых надлежит суммировать в текущей точке наблюдения, расположенной в дальней зоне на сферической поверхности радиуса r.

Разберём указанный метод и выведем формулу для диаграммы направленности симметричного вибратора.

На рис.2.2 показан тонкий вибратор с выделенными на нём двумя симметрично расположенными диполями длинной dZ с координатами центров ±Z. Там же указана система координат для отсчёта положения точки наблюдения А и координат диполей с током.

Поскольку точка наблюдения отнесена в дальнюю зону, то есть на достаточно большое расстояние r0>>2l, то все лучи, направленные в точку наблюдения от различных диполей, можно считать практически параллельными. Это значит, что r0, r1 и r2 связаны между собой соотношениями:

     r2-Dr=r0=r1+Dr,                                      (2.12)

где

Dr=|Z|cosq.

Запишем поле от двух выбранных диполей, считая их достаточно тонкими (диаметр провода значительно меньше длины волны):

,            (2.13)

Сравнивая поля от двух противоположных элементарных вибраторов, видим, что они только отличаются значением множителя , то есть амплитудами, обратно пропорциональными расстояниями r(Z), и фазами, прямо пропорциональными расстояниям:

Y=k×r(z).                                         (2.14)

При условии r>>l отличие амплитуд будет настолько несущественным, что с хорошей точностью модули полей от всех диполей можно определять через одно и то же расстояние r0, соответствующее середине симметричного вибратора.

Однако при оценке фазовых сдвигов полей с различием расстояний r1 и r2 нельзя не считаться.

С учётом принятых допущений поле от пары диполей записывается в виде:

          ,        (2.15)

Чтобы получить значение полного поля и диаграммы направленности симметричного вибратора, необходимо просуммировать dEq от всех пар симметрично расположенных диполей, составляющих оба провода антенны.

Сложение бесконечного числа элементарных полей осуществляется путём интегрирования выражения (2.15) в пределах одного плеча вибратора. Результирующее поле оказывается равным:

.        (2.16)

В полученной формуле в квадратных скобках выделено произведение двух множителей, зависящих от q и представляет собой диаграмму направленности в меридиональной плоскости F(q). Каждому из множителей может быть приписан определённый физический смысл.

Ниже приведены графики для F(q) при различных отношениях .

Рис. 2.3. Диаграмма направленности при l/l=0,25.

Рис. 2.4. Диаграмма направленности при l/l=0,5

Рис. 2.5. Диаграмма направленности при l/l=
0,75

2.4.Схема замещения нелинейного резистора

Нелинейный резистор - элемент электрической цепи, напряжение и ток в котором связаны нелинейным законом. Для моделирования нелинейных резисторов в радиотехнике используются несколько методов, например, замена его на эквивалентный источник напряжения (тока), управляемого током (напряжением).

В нашем случае в качестве нелинейного резистора используется диод. Для моделирования диода будем использовать зависимость тока диода от напряжения i=f(U), приложенного к его концам, то есть, заменяем источником тока, управляемым напряжением. Эту зависимость запишем  аналитически в виде i=I0×eaU, которая хорошо согласуется с экспериментальными данными. Кроме того, диод обладает паразитной индуктивностью выводов и паразитной ёмкостью корпуса. Паразитная ёмкость корпуса моделируется включением ёмкости соответствующего номинала параллельно источнику тока, а паразитная индуктивность включением эквивалентной индуктивности последовательно с ним.

Страницы: 1, 2, 3, 4, 5, 6, 7



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать