Разработка и расчет двухкаскадного усилителя с релейным выходом
Федеральное агентство по рыболовству
Дальневосточный государственный технический
Рыбохозяйственный университет
Кафедра электрооборудование и автоматика судов.
Курсовой проект на тему:
«Разработка и расчет двухкаскадного усилителя с релейным выходом.»
Выполнил: Студент группы УЭМ-4
Коротков А. Г.
Проверил: _______________
Владивосток
2008
Принципиальная схема и описание работы.
Усилители с релейным выходом широко применяются в электрических схемах автоматики, управления и защиты. На базе таких усилителей строят схемы нуль-индикаторов с мощностью срабатывания нескольких десятков микроватт, схемы измерительных органов защиты, подключаемые к маломощным датчикам, и исполнительные элементы с выходной мощностью до нескольких киловатт. Релейное действие этого усилителя проявляется в том, что при определенном изменении величины входного сигнала или его знака усилитель практически мгновенно переходит из одного устойчивого состояния в другое. Принципиальная схема усилителя приведена на рис. 1.
Она содержит два усилительных каскада на транзисторах VT1,VT2 работающих в ключевом режиме. В цепь коллектора транзистора VT2 включена катушка малогабаритного электромагнитного реле Р1. Усилитель питается от источника постоянного тока через параметрический стабилизатор напряжения (стабилитрон VD4 и резистор R6).
Схема работает следующим образом. При отсутствии входного сигнала транзистор VT1 открыт и насыщен, а транзистор VT2 закрыт, реле Р1 обесточено. Открытое состояние транзистора обеспечивается током в цепи базы через резисторы R1 и R3 от источника коллекторного питания ЕК . Транзистор VT2 при этом находится в режиме отсечки, так как напряжение на его базе положительно относительно эмиттера и примерно равно напряжению смещения, которое задается диодом VD2. Появление отрицательного входного сигнала (минус на базе транзистора) не приводит к изменению состояния транзисторов усилителя.
При появлении положительного входного сигнала появляется входной ток, уменьшающий ток в цепи базы открытого транзистора VT1. При некотором входном токе транзистор VT1 переходит из режима насыщения в усилительный режим. В усилительном режиме уменьшение тока в цепи базы приводит к уменьшению тока в цепи коллектора транзистора, что приводит к увеличению отрицательного потенциала на базе транзистора VT2 и его отпиранию.
В момент переключения транзисторов действует положительная обратная связь (резистор R3). Отпирание транзистора VT2 приводит к уменьшению напряжения на его коллекторе, следовательно, уменьшается ток через резистор R3 и ток в цепи базы транзистора VT1. Этот процесс ускоряет запирание транзистора VT1, что в свою очередь ускоряет отпирание транзистора VT2, т.е. наступает лавинообразный процесс, приводящий практически к мгновенному насыщению транзистора VT2. Положительная обратная связь обеспечивает релейный эффект. При уменьшении или исчезновении входного тока транзисторы усилителя переключаются в исходное состояние.
При запирании транзистора VT2 на катушке реле Р1, обладающей индуктивностью, наводится ЭДС самоиндукции, которая, складываясь с напряжением коллекторного питания, может привести к пробою транзистора. Для защиты от наводимых перенапряжений применяется цепочка VD3, R4. Появляющееся перенапряжение открывает диод VD3 и ток реле Р1 при запирании транзистора VT2 будет уменьшаться постепенно, замыкаясь через цепочку VD3, R4. Напряжение на транзисторе VT2 в этом случае увеличится только на величину падения напряжения в этой цепочке.
Постепенное уменьшение тока в катушке Р1 при запирании транзистора VT2 приводит к увеличению времени возврата реле, что не всегда приемлемо. Для уменьшения времени возврата реле увеличивают сопротивление резистора R4.
Исходные данные, вариант №17:
I=300 µA ± 10 % → 0.0003 A → 0.00027÷0.00033 А
U=220 V ± 10% → 198÷242 V
tº = 203÷343 K → -70÷70 ºC
Реле:
U = 12 V
R =320 Ohm
K =0.7÷1.2 → 8.4÷14.4 V
Расчет.
Начнем с выбора элементов схемы параметрического стабилизатора. Определяем напряжение надежного срабатывания реле Р1 , которое находится в пределах 0.7÷1.2 U т.е. 8.4÷14.4 V.
I= U /R=12/320=0.0375 А.
Обеспечить эти параметры можно с помощью стабилитрона КС512А с номинальным напряжением стабилизации 12 V. Основные параметры этого стабилитрона приведены ниже.
I=1 мА.
I=67 мА.
Р= 1 Вт.
R ≤ 25 Ом.
Разброс напряжений стабилизации в зависимости от температур при токе стабилизации
5 мА приведен в таблице.
Температура К |
Напряжение стабилизации В |
303 |
10.8 ÷ 13.2 |
213 |
9.9 ÷ 13.2 |
273 |
10.8 ÷ 14.5 |
Окончательный расчет параметрического стабилизатора будет проведен после расчета усилителя.
Выберем транзисторы усилителя. Для повышения надежности работы транзисторов рекомендуется выбирать рабочие напряжения и токи так, чтобы они не превышали
0.7 ÷ 0.8 предельных значений. Учитывая максимальное коллекторное напряжение, для нашей схемы нужен транзистор, у которого постоянное напряжение, коллектор – эмиттер
U› Е / 0.7 =14.5/0.7=20.7 V.
А постоянный ток коллектора
I› E/ R=14.5/320=0.0453 А.
Для обоих каскадов усилителя выбираем транзистор КТ3107Б, параметры которого приведены ниже
h |
I=2 mA |
120 ÷ 220 |
I=0.01 mA |
≥ 30 |
|
I=100 mA |
≥50 |
|
U V. |
I=100 мА. I=5 мА. |
≤0.5 |
I=10 мА. I=0.5 мА. |
≤0.2 |
|
U V. |
I=100 мА. I=5 мА. |
≤1 |
I=10 мА. I=0.5 мА. |
≤0.8 |
|
I µA. |
|
≤0.1 |
I µA. |
|
≤0.1 |
UV. |
|
50 |
UV. |
|
45 |
UV. |
|
5 |
ImA. |
|
100 |
P мВт. |
t=213÷298 K |
300 |
Усилитель рассчитываем при номинальном напряжении коллекторного питания и температуре 298 К. Расчет начинаем с выходного каскада.
Для создания источника запирающего напряжения в цепи транзистора VT2 выбираем кремниевый диод VD2 КД102А.
Параметры диода:
U= 250 V.
I= 0.1 A.
I= 0.1 µA.
U= 1 V.
Выбираем прямой ток диода VD2 2мА. И определяем прямое напряжение на диоде,
Равное U=0.8 V. при температуре 298 К. Тогда сопротивление резистора R5
R5=(Е- U)/I=(12-0.8)/0.002=5600 Ом.
Выбираем номинальное сопротивление 5.6 кОм. ±5%
Мощность рассеиваемая на резисторе учитывая максимальное коллекторное напряжение будет:
P≈ Е2 / R5 =14.42/5600=0.037 Вт.
Выбираем резистор R5 МЛТ-0,125 5,6 кОм. ±5%.
Через R5 и диод VD2 протекает ток:
I=(E- U)/R5=(12-0.8)/5600=0.002 А.
Ток в цепи коллектора транзистора VT2 когда он находится в режиме насыщения, будет:
I=(Е- U- U)/R=(12-0.8-0.5)/320=0.0334 А.
Минимальное напряжение на катушке реле Р1 когда транзистор VT2 находится в режиме насыщения, с учетом неблагоприятных сочетаний параметров элементов схемы равно:
U=E- U- U=9.9-1-0.5=8.4 V.
Что находится в допустимых пределах.
Максимальный прямой ток диода VD2, когда транзистор VT2 насыщен, с учетом неблагоприятных параметров элементов схемы равен:
IVD2.max.=IK.нас.+ IR5 ≈ EK.max. / RP1 + EK.max. / R5 =14.4/320+14.4/5600=0.0476 A.
Что меньше максимально допустимого тока для диода типа КД102А.
Расчетный статический коэффициент передачи тока транзисторов
h21Э.расч.=h21Э Кс КТ
где Кс =0.7 коэффициент учитывающий старение, КТ – коэффициент учитывающий температуру КТ = 0.6 при температуре 233 К. и КТ =1.2 при температуре 323 К.
Минимальный статический коэффициент передачи тока транзистора VT2 учитывая режим работы, определим как
h21E.min2 = 50*0.7*0.6=21
Ток в цепи базы VT2 на границе насыщения
Страницы: 1, 2