где Uкэо – напряжение в рабочей точке;
Uвых – выходное напряжение;
Uнас - начальное напряжение нелинейного участка выходных
характеристик транзистора, выбирается от 1В до 2В.
Полагая Uнас=1.5В, по формулам (4.3) и (4.4) находим:
Напряжение источника питания для схемы, представленной на рисунке 4.1,а, будет составлять сумму падений напряжений на сопротивлении Rк и транзисторе:
. (4.5)
Перепишем выражение (4.5) в следующем виде:
. (4.6)
Выражение (4.6) есть ни что иное как уравнение прямой (в данном случае ток Iкo является функцией аргумента Uкэо), которая называется нагрузочной прямой по постоянному току. В пределах этой прямой и будет изменяться рабочая точка.
Для проведения прямой выберем две точки с координатами (Еп,0) и (0,Iкmax):
В сигнальном режиме строится нагрузочная прямая по переменному току. Для построения данной прямой зададимся некоторым приращением тока и соответствующим приращением напряжения, учитывая, что в данном случае сопротивление нагрузки будет определяться выражением (4.1):
. (4.7)
Для упрощения расчетов примем . Тогда после подстановки в выражение (4.7) числовых значений получаем:
Нагрузочные прямые по постоянному и переменному токам представлены на рисунке 4.2.
Рисунок 4.2 – Нагрузочные прямые для резистивного каскада
Мощности, рассеиваемая на транзисторе, потребляемая каскадом и выходная, определяются согласно следующим выражениям:
, (4.8)
, (4.9)
. (4.10)
По формулам (4.8), (4.9) и (4.10) вычисляем соответствующие мощности:
Коэффициент полезного действия (КПД) рассчитывается по формуле
(4.11)
Подставляя в (4.11) числовые значения, получаем:
4.1.2 Расчет рабочей точки для дроссельного каскада
В отличие от предыдущего каскада дроссельный имеет в цепи коллектора вместо сопротивления Rк дроссель Lдр.
Принципиальная схема дроссельного каскада и эквивалентная схема по переменному току представлены на рисунках 4.3,а и 4.3,б соответственно.
Рисунок 4.3,а- Принципиальная схема дроссельного каскада
Рисунок 4.3,б- Эквивалентная схема по переменному току
Поскольку для сигнала дроссель является холостым ходом, то в данном случае сопротивление нагрузки по переменному току будет равно сопротивлению нагрузки:
Расчет рабочей точки производится по тем же выражениям, что и для предыдущего каскада.
По формуле (4.2) рассчитаем выходной ток:
Тогда согласно выражениям (4.3) и (4.4) рабочая точка будет иметь следующие координаты:
Так как дроссель по постоянному току является короткозамкнутым проводником, то напряжение питания будет равным падению напряжения на транзисторе:
Таким образом получаем все необходимые данные для построения нагрузочной прямой по постоянному току.
Для построения нагрузочной прямой по переменному току примем приращение коллекторного тока равным току в рабочей точке:
Тогда согласно выражению (4.7) соответствующее приращение напряжения будет равно:
Нагрузочные прямые по постоянному и переменному токам представлены на рисунке 4.4.
Рисунок 4.4- Нагрузочные прямые для дроссельного каскада
Мощности, рассеиваемая на транзисторе, потребляемая каскадом и выходная, аналогично определяются по выражениям (4.8), (4.9) и (4.10):
Видно, что мощность рассеивания равна потребляемой.
По формуле (4.11) рассчитаем КПД дроссельного каскада:
Проведем сравнительный анализ двух схем. Энергетические характеристики резистивного и дроссельного каскадов представлены в таблице 4.1.
Параметр
Еп, В
Ррас, Вт
Рпот, Вт
Iко, мА
Uкэо, В
h, %
Резистивный каскад
26.6
3.168
9.363
352
9
13.7
Дроссельный каскад
9
1.584
1.584
176
9
40.4
Таблица 4.1 – Энергетические характеристики резистивного и дроссельного каскадов
Сравнивая энергетические характеристики двух каскадов, можно сделать вывод, что лучше взять дроссельный каскад, так как он имеет наименьшее потребление, напряжение питания и ток, а также более высокий КПД.
4.2 Выбор транзистора выходного каскада
Выбор транзистора осуществляется по следующим предельным параметрам:
предельный допустимый ток коллектора
; (4.12)
предельное допустимое напряжение коллектор-эмиттер
(4.13)
предельная мощность, рассеиваемая на коллекторе
; (4.14)
граничная частота усиления транзистора по току в схеме с ОЭ
. (4.15)
Требованиям (4.12), (4.13), (4.14) и (4.15) удовлетворяет транзистор КТ911А [3]. Основные технические характеристики этого транзистора приведены ниже.
Электрические параметры:
-граничная частота коэффициента передачи тока в схеме с ОЭ МГц;
-статический коэффициент передачи тока в схеме с ОЭ ;
-постоянная времени цепи ОС при UКБ=10В, IЭ=30мА tОС=25пс
-емкость коллекторного перехода при В пФ.
Предельные эксплуатационные данные:
-постоянное напряжение коллектор-эмиттер В;
-постоянный ток коллектора мА;
-постоянная рассеиваемая мощность коллектора Вт;
-температура перехода .
4.3 Расчет эквивалентных схем транзистора
4.3.1 Расчет схемы Джиаколетто
Соотношения для расчёта усилительных каскадов основаны на использовании эквивалентной схемы транзистора, предложенной Джиаколетто, справедливой для области относительно низких частот [4].
Эквивалентная схема Джиаколетто представлена на рисунке 4.5.
Рисунок 4.5- Эквивалентная схема Джиаколетто
Зная паспортные данные транзистора, можно рассчитать элементы схемы, представленной на рисунке 4.5, согласно следующим формулам [4]:
Проводимость базы вычисляем по формуле
(4.16)
где Ск - ёмкость коллекторного перехода;
- постоянная времени цепи обратной связи. (паспортные данные, в
дальнейшем - *)
В справочной литературе значения и часто приводятся измеренными при различных значениях напряжения коллектор-эмиттер . Поэтому при расчетах значение следует пересчитать по формуле
(4.17,а)
где - напряжение , при котором производилось измерение ;
- напряжение , при котором производилось измерение .
Также следует пересчитать ёмкость коллекторного перехода для напряжения коллектор-эмиттер, равному напряжению в рабочей точке:
(4.17,б)
Сопротивление эмиттерного перехода рассчитывается по формуле
(4.18)
где Iко - ток в рабочей точке в миллиамперах;
а=3 – для планарных кремниевых транзисторов,
а=4 – для остальных транзисторов.
Проводимость перехода база-эмиттер рассчитывается по формуле
(4.19)
где - сопротивление эмиттерного перехода;
- статический коэффициент передачи тока в схеме с ОЭ (*).
Ёмкость эмиттера рассчитывается по формуле
(4.20)
где fт – граничная частота коэффициента усиления тока базы (*).
Крутизна внутреннего источника рассчитывается по формуле
(4.21)
где - статический коэффициент передачи тока в схеме с ОБ.