Технология получения монокристаллического Si

В начале процесса роста монокристалла часть затравочного монокристалла  расплавляется для устранения в нем участков с повышенной плотностью механических напряжений и дефектами. Затем происходит постепенное вытягивание монокристалла из расплава.

Для получения монокристаллов кремния методом Чохральского разработано и широко используется высокопроизводительное автоматизированное оборудование, обеспечивающее воспроизводимое получение бездислокационных монокристаллов диаметром до 200 300 мм. С увеличением загрузки и диаметра кристаллов стоимость их получения уменьшается. Однако в расплавах большой массы {60120 кг) характер конвективных потоков усложняется, что соз­дает дополнительные трудности для обеспечения требуемых свойств материала. Кроме того, при больших массах расплава снижение стоимости становится незначительным за счет высокой стоимости кварцевого тигля и уменьшения скорости выращивания кристаллов из-за трудностей отвода скрытой теплоты кристаллизации. В связи с этим с целью дальнейшего повышения производительности процесса и для уменьшения объема расплава, из которого производится выращивание кристаллов, интенсивное развитие получили установки полунепрерывного выращивания. В таких установках производится дополнительная непрерывная или периодическая загрузка кремния в тигель б,ез охлаждения печи, например путем подпитки расплава жидкой фазой из другого тигля, который, в свою очередь, также может периодически или непрерывно подпитываться твердой фазой. Такое усовершенствование метода Чохральского позволяет снизить стоимость выращиваемых кристаллов на десятки процентов. Кроме того, при этом можно проводить выращивание из расплавов неболь­шого и постоянного объема. Это облегчает регулирование и опти­мизацию конвективных потоков в расплаве и устраняет сегрега­ционные неоднородности кристалла, обусловленные изменением объема расплава в процессе его роста.

Легирование

Для получения монокристаллов п- или р-типа с требуемым удельным сопротивлением проводят соответствующее легирование исходного поликристаллического кремния или расплава. В загру­жаемый поликремний вводят соответствующие элементы (Р, В, As, Sb и др.) или их сплавы с кремнием, что повышает точность ле­гирования.

Окончательная обработка кремния
Из установки извлекают кремниевый слиток диаметром 20 - 50 см и длиной до 3 метров. Для получения из него кремниевых пластин заданной ориентации и толщиной в несколько десятых миллиметра производят следующие технологические операции.

1. Механическая обработка слитка:
- отделение затравочной и хвостовой части слитка;
- обдирка боковой поверхности до нужной толщины;
- шлифовка одного или нескольких базовых срезов (для облегчения дальнейшей ориентации в технологических установках и для определения кристаллографической ориентации);
- резка алмазными пилами слитка на пластины: (100) - точно по плоскости (111) - с разориентацией на несколько градусов.
2. Травление. На абразивном материале SiC или Al2O3 удаляются повреждения высотой более 10 мкм. Затем в смеси плавиковой, азотной и уксусной кислот, приготовленной в пропорции 1:4:3, или раствора щелочей натрия производится травление поверхности Si.
3. Полирование - получение зеркально гладкой поверхности. Используют смесь полирующей суспензии (коллоидный раствор частиц SiO2 размером 10 нм) с водой.

В окончательном виде кремний представляет из себя пластину диаметром 15 - 40 см, толщиной 0.5 - 0.65 мм с одной зеркальной поверхностью. Вид пластин с различной ориентацией поверхности и типом проводимости приведен на рисунке 6.

Основная часть монокристаллов кремния, получаемых методом Чохральского, используется для производства интегральных мик­росхем; незначительная часть (около 2 %) идет на изготовление сол­нечных элементов. Метод является оптимальным для изготовления приборов, не требующих высоких значений удельного сопротивле­ния (до 25 Ом·см) из-за загрязнения кислородом и другими примеся­ми из материала тигля.

Бестигельной зонной плавки (БЗП)

Выращивание кристаллов кремния методом бестигельной зонной плавки (БЗП) осуществляют на основе одновиткового индуктора (типа «игольного ушка»), внутренний диаметр которого меньше диа­метра исходного поликристаллического стержня и кристалла. Во всех современных системах зонной плавки используется стационар­ное положение индуктора, а поликристаллический стержень и рас­тущий монокристалл перемещаются. Скорость выращивания крис­таллов методом БЗП вдвое больше, чем по методу Чохральского, благодаря более высоким градиентам температуры. Из-за техниче­ских трудностей выращиваемые методом БЗП кристаллы кремния (их диаметр доведен до 150 мм) уступают по диаметру кристаллам, получаемым методом Чохральского. При бестигельной зонной плав­ке легирование выращиваемого кристалла, как правило, проводят из газовой фазы путем введения в газ-носитель (аргон) газообразных соединений легирующих примесей. При этом удельное сопротивле­ние кристаллов может изменяться в широких пределах, достигая 200 Ом·см. При выращивании в вакууме получают монокристал­лы с очень высоким сопротивлением до 3·104 Ом·см. Для по­лучения такого материала во избежание загрязнений не применяют резку или обдирку стержня поликристаллического кремния. Оста­точные доноры, кислород, углерод и тяжелые металлы удаляют из кремниевого стержня пятикратной зонной очисткой в вакууме. К не­достаткам метода БЗП относится значительная радиальная неоднородность распределения удельного сопротивления (2030 %) полу­чаемых кристаллов, которую можно уменьшить использованием трансмутационного легирования.

Монокристаллы кремния, получаемые методом БЗП, составляют около 10 % общего объема производимого монокристаллического кремния и идут в основном на изготовление дискретных приборов, особенно тиристоров большой мощности.

Дефекты монокристаллического Si

Кристаллы кремния, получаемые методами Чохральского и БЗП для целей твердотельной электроники, в подавляющем большинст­ве являются бездислокационными. Основными видами структурных дефектов в них являются микродефекты (МД) размером от долей нанометров до нескольких микрометров с концентрацией 107 см-3 и более. Различают в основном три вида МД: дислокационные петли, стабилизированные примесью, и их скопления (А-дефекты); сфери­ческие, удлиненные или плоские примесные преципитаты и части­цы плотной кремниевой фазы (В-дефекты) и скопления вакансий (Д-дефекты). Предполагается, что МД могут образовываться непос­редственно в процессе кристаллизации, при обработке кристалла (термической, радиационной, механической и др.), а также в про­цессе работы полупроводникового прибора. Так, при росте кристал­ла МД могут возникать в результате захвата растущим кристал­лом примесных комплексов и частиц, обогащенных примесью, ка­пель расплава, а также агломератов атомов кремния. На послерос­товых этапах формирование МД происходит в основном в резуль­тате распада твердого раствора примеси или собственных точечных дефектов в кремнии на гетерогенных центрах или первичных МД, образовавшихся в процессе роста кристалла.

Основными фоновыми примесями в монокристаллах кремния яв­ляются кислород, углерод, азот, быстродиффундирующие примеси тяжелых металлов.

Кислород в кремнии в зависимости от концентрации, формы существования и распределения может оказывать как отри­цательное, так и положительное влияние на структурные и элект­рические свойства кристаллов. Концентрация кислорода в кристал­лах, выращенных по методу Чохральского из кварцевого тигля, определяется следующими источниками: растворением тигля и поступлением кислорода в расплав из атмосферы камеры выращивания. В зависимости от вязкости расплава, характера конвективных по­токов в расплаве, скорости роста кристаллов концентрация кисло­рода в выращенных кристаллах изменяется от 5·1017 до 2·1018 см-3. Предел растворимости кислорода в кристаллическом кремнии со­ставляет 1,8·1018. С понижением температуры растворимость кис­лорода резко падает. Для контролирования и уменьшения кон­центрации кислорода в кристаллах кремния, выращиваемых мето­дом Чохральского, вместо кварцевых используют тигли, изготов­ленные из нитрида кремния, тщательно очищают атмосферу печи (аргон) от кислородсодержащих примесей.

Концентрация кислорода в кристаллах, получаемых методом БЗП, обычно составляет 2·1015 2·1016 см -3.

Углерод в кремнии является одной из наиболее вред­ных фоновых примесей, оказывающей наряду с кислородом значи­тельное влияние на электрические и структурные характеристики материала. Содержание углерода в кристаллах, получаемых по методу Чохральского и БЗП, составляет 5·1016 5*1017 см -3. Раст­воримость углерода в расплаве кремния при температуре плавления равна (2-4) ·1018 см -3, в кристаллах 6·1017 см -3. Эффективный коэффициент распределения углерода в кремнии 0,07.

Основными источниками углерода в выращиваемых кристаллах является монооксид и диоксид углерода, а также исходный поли­кристаллический кремний. Оксиды углерода образуются в резуль­тате взаимодействия монооксида кремния с графитом горячих эле­ментов теплового узла и подставки для тигля в установке для вы­тягивания кристаллов, в результате взаимодействия кварцевого тигля с графитовой подставкой, окисления графитовых элементов кислородом. Для снижения концентрации кислорода в кристаллах уменьшают его содержание в основных источниках, уменьшают чис­ло графитовых и углеродсодержащих узлов камеры выращивания или нанесения на них защитных покрытий.

Остаточная концентрация азота в кристаллах кремния, полученных по методам Чохральского и БЗП, не превышает 1012 см -3. Предел его растворимости в твердом кремнии при температуре плавления составляет 4,5·1015 см -3, равновесный коэффициент расплавления равен 0,05. Основными источниками азо­та являются газовая атмосфера, выделения из графита, тигель из нитрида кремния. Являясь донором, азот, кроме того, приводит к повышению значений критических напряжений образования дис­локаций в кремнии.

Концентрация быстродиффундирующих примесей тяжелых ме­таллов (Fe, Сu, Аu, Сr, Zn и др.) в кристаллах кремния, выращивае­мых методом Чохральского и БЗП, не превышает 5-Ю13, а в особо чистых, получаемых многократной зонной плавкой,5 ·1011 см -3.

Параметр

Метод Чохральского

Метод зонной плавки

Максимальный диаметр пластины, мм

150 - 400

200

Удельное сопротивление p- тип, Ом ·см

0.005-50

0.1-3000

Удельное сопротивление n- тип, Ом ·см

0.005-50

0.1-800

Ориентация

[111], [110], [100]

[111], [100]

Время жизни неосновных носителей, мкс

10-50

100-3000

Содержание кислорода, атом/см2

10-100

<10

Содержание углерода, атом/см2

10

<10


Литература

1.    Технология полупроводниковых и диэлектрических материалов Ю.М. Таиров В.Ф.Цветков Москва «Высшая школа» 1990г

2.    Оборудование полупроводникового производства Блинов, Кожитов, МАШИНОСТРОЕНИЕ1986г

3.    Методы определения основных параметров полупроводниковых материалов. Л.П.Павлов. Москва. «Высшая школа». 1975г


Страницы: 1, 2, 3, 4



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать