Тиристоры и некоторые другие ключевые приборы

            положение границ зон до подачи смещения, 

            изменение положения границ зон правого перехода при попадании инжектированных эмиттером дырок в среднюю р-область.


Коэффициент усиления по току, превышающий единицу, при соответствующем направлении входного и выходного тока обеспечивает работу прибора в ключевом режиме.

     Биполярный транзистор при включении его по схеме с общей базой имеет необходимые направления токов, но его коэффициент усиления по току a0 < 1. При включении по схеме с общим эмиттером коэффициент усиления по току превышает единицу (B0 > 1), но не соблюдаются необхо­димые направления токов. В четырехслойной тиристорной структуре выполняются оба эти условия.


Динистор. Рассмотрим работу диода состоящего из четырех че­редующихся слоев p1-n1-p2-n2 (рис. 5-8, а). Если подать на него не очень большое напряжение U плюсом на слой р1 и минусом на слой n1, то потечет ток, как показано стрелкой. В результате переходы П1 и П2 будут работать в прямом направлении, а переход П2  - в обратном. Таким образом, получится как бы сочетание двух транзисторов в одном приборе     (рис.5-8, б) (Комбинация транзисторов р-п-р и п-р-п, показанная на рис. 5-8, б, действительно обладает свойствами динистора и может быть использована на практике.): одним транзистором является комбинация слоев p1-n1-p2, другим - комбинация слоев п1-р2-n2. Слои p1 и n2 являются эмиттерами, n1 и p2, — базами для одного транзистора и коллекторами для второго. Во избежание путаницы их называют базами. Переход П2 называют коллекторным.

Рис 3. Структура динистора (а) и его двухтранзисторный эквивалент (б).

     Рассмотрим четырехслойную структуру, изображенную на рисунке 3. В этом случае напряжение окажется приложенным с основном к переходу П2, который будет работать в режиме коллектора. Переходы П1 и П2 окажутся смещенными в прямом направлении. Переход П будет представлять собой эммитер, инжектирующий неосновные носители в область n1, выполняющую роль базы для первого эммитера. Дырки, прошедшие первую базу и коллекторный переход П2, появляются во второй базе. Их нескомпенсированный объемный заряд будет понижать высоту потенциального барьера перехода П3 и вызывать встречную инжекцию электронов.

     Аналогичным образом можно рассматривать инжекцию электронов из области n2 в область p2 их появление в область n1 и встречную вторичную инжекцию дырок из области p1 в область n1. Таким образом, обе крайние области выполняют роль эммитеров, причем каждый эммитер отвечает вторичной встречной инжекцией на инжекцию другого эммитера. Этим создаются все необходимые предпосылки для развития лавинного процесса. Тем не менее лавинный процесс роста тока через систему начинается не при любом напряжение на структуре, а только при некотором достаточно большом напряжении.

     Если изменить полярность напряжения, приложенного к рассматриваемой структуре, на обратную, то переходы П1 и П3 окажутся смещенными в обратном направлении. Если оба эти перехода достаточно высоковольтные, то вольт-амперная характеристика будет иметь вид обратной ветви обычной диодной характеристики.

     Пока коллекторный переход работает в обратном направлении, практически все приложенное напряжение U падает на нем. Поэтому при больших значениях U следует учитывать ударную ионизацию в этом переходе. Примем  для дырок и электронов один и тот же коэффициент умножения М (чтобы не усложнять выкладки) и обозначим через a1   и  a3  интегральные коэффициенты передачи тока от переходов П1 и П3 к переходу П2. Тогда ток последнего можно записать в следующем виде:


Iп2=M(Ia1+Ia3+Ik0 )       (1)


где Ik0—сумма теплового тока, тока термогенерации и тока утечки в переходе П2.

Поскольку токи через все три перехода одинаковы и равны внешнему току I, легко находим:


           I=MIk0/(1-Ma)       (2)



    Здесь a=a1-a3 суммарный коэффициент передачи тока от обоих эмиттеров к коллектор­ному переходу. Выражение (2) в неявном виде является вольт-амперной характеристикой динистора, так как параметр M в правой части зависит от напряжения (Ток Ik0  при том его определении, которое было дано в формуле (1), тоже зависит от напряжения. Однако учет этой зависимости наряду с зависимостью М. (U) сильно усложняет задачу. В некоторых случаях (например, если переход П2, зашунтирован небольшим заранее известным сопротивлением) можно пренебречь функ­цией М (U) и считать зависимость от напряжения сосредоточенной в функции Ik0 (U). В других случаях можно учесть зависимость a (U) и пренебречь функциями М (U) и Ik0 (U). Наконец, можно использовать различные 'комбинации этих функций. Общая методика анализа при этом не меняется.). Структура выражения (2) такая же, как в случае лавинного транзистора при Iб == 0. Такое сходство вполне естественно, поскольку оба «составляющих транзи­стора» в динисторе (рис. 3, б) включены по схеме ОЭ с оборванной базой.

      Вольт-амперная кривая динистора вместе с его условным обозна­чением показана на рис. 4. Как видим, она подобна характеристике лавинного транзистора в схеме ОЭ (см. рис. 4)..Однако существенным преимуществом динисторов является то, что рабочее напряжение в области больших токов у них значительно меньше и почти не зависит от тока. Кроме того, динисторы работают без всякого предва­рительного смещения в цепи базы в отличие от лавинных транзисторов, у которых такое смещение необходимо (рис. 4, а). Критические точки характеристики на рис. 4, в которых r == dU/dI == 0, называют соответственно точкой прямого переключе­ния (ПП) и точкой обратного переключения (ОП).


Рис. 4. Вольт-амперная характеристика динистора. а-начальный участок; б-полная кривая.


Происхождение отрицательного участка на характеристике динистора обусловлено той же причиной, что и в лавинном тран­зисторе. А именно, у обоих приборов на этом участке задан постоянный ток базы (у динистора он равен нулю). Поэтому должно выполняться соотношение dIk = dIэ, т. е. дифференциальный коэффициент а должен быть все время равен единице. С ростом тока величина a стремится воз­расти, но это возрастание предотвращается уменьшением напряжения на коллекторном переходе, т. е. ослаблением ударной иони­зации. Такой же вывод следует из формулы  (2), в которых знаменатель не может быть отрицательным, и, следова­тельно, начиная с некоторой рабочей точ­ки,  увеличение  интегрального коэффициента a должно сопровождаться уменьшением коэффициента M,т. е. умень­шением коллекторного напряжения.

Однако, несмотря на определенное сходство с лавинным транзистором, имеет принципиальную особенность. Эту особенность легко показать, если представить вольт-амперную характеристику в форме U(I). Подставив выражение для характеристики в области ионизации  в (2) и решив последнее относительно напряжения, получим:

U=UM[1-(a*I+Ik0)/I]1/n       (3)

У лавинного транзистора, у которого a < 1 при любом токе, напряже­ние Uk всегда имеет конечную величину. У динистора, у которого сум­марный коэффициент a == a1+a3 может превышать единицу, напря­жение U (точнее, напряжение на коллекторном переходе) делается равным нулю при некотором конечном токе /. При еще большем токе формулы (2) и (3) становятся недействительными, так как

коллекторный переход оказывается смещенным в прямом направлении и механизм работы динистора качественно изменяется. Рассмотрим отдельные участки характеристики, показанной на рис. 4.

Начальный участок 1 характерен очень малыми токами, при которых можно считать a @ 0. Сопротивление на этом участке весьма велико, поэтому заданной величиной всегда бывает напряжение, а ток можно найти по формуле (2).

На переходном участке 2 рост напряжения замедляется, а сопро­тивление резко падает. Эти изменения являются следствием увеличения коэффициента а и могут быть легко оценены с помощью выражения (3).

В конце второго участка, в точке ПП, сопротивление обращается в нуль, а затем (при заданном токе) становится отрицательным. Коор­динаты точки прямого переключения определяются условием dU/dI = 0.

Напряжение Uп.п обычно близко к величине Um и для разных ти­пов динисторов лежит в широких пределах от 25—50 до 1 000—2 000 в ( Эти цифры характерны для серийных динисторов. Можно изготовить ана­логичные приборы с рабочими напряжениями всего в несколько вольт). Ток Iп.п лежит в пределах от долей микроампера до нескольких мил­лиампер в зависимости от материала и площади переходов.

 На отрицательном участке 3 характеристика по-прежнему описы­вается формулой (3), которую, однако, можно упростить, полагая aI > Ik0. Тогда


U@UM(1-a)1/n           (4)


где a увеличивается с ростом тока. Дифференцируя (4) по току, получаем сопротивление на этом участке:    

    r=  -  UM (da/dI) /  n(1-a)[n-1]/n         (5)

Отсюда видно, что величина сопротивления должна существенно меняться с изменением тока. Характер этого изменения определяется функцией a(I) и в общем случае может быть немонотонным. Однако чаще всего сопротивление r возрастает (по модулю) с ростом тока. Средняя величина ôrô между точками ПП и ОП лежит обычно в пределах от 5—10 до 50—100 ком.

Коллекторное напряжение, уменьшаясь на участке 3, делается равным нулю в точке Н (Точка Н обозначает границу режима насыщения—режима, в котором и эмит-терные, и коллекторный переходы работают в прямом направлении.). Из формулы (3) при U = 0  получаем соотношение                   


    I=Ik0/[1- a]               (6)


из которого определяется ток Iн. Поскольку этот ток несравненно больше, чем Iк0, его можно определять из условия


   a = a1 + a3 @ 1                     (7)

 пользуясь графиками a (I).

Напряжение Uн является суммой напряжений на эмиттерных переходах, так как    Uп2 = 0. Используя формулу UЭ=jT ln(Iэ/I`э0+1+an(euk/yt-1)) при Uk=0, Iэ = Iн и считая оба эмиттерных перехода одинаковыми, получаем:

Uн=2 jT ln (Iэ/I`э0)                    (8)


Это напряжение составляет несколько десятых долей вольта у германиевых динисторов и 0,5—1 в — у кремниевых.

При токеI > Iн переход П2, будучи смещен в прямом направ­лении, инжектирует носители навстречу тем потокам, которые посту­пают от эмиттеров. Инжектируемый компонент тока Iп2 равен раз­ности между собираемым компонентом (a1 Iп1+ a3 Iп3) и  полным током Iп2. Поэтому если для простоты положить a1 = 0 (т. е. считать, что носители, инжектируемые переходом П2. не доходят до эмиттеров) и принять условие U >>jT  для всех трех переходов, то напряжение на открытом динисторе можно выразить с помощью формулы UЭ=jT ln(Iэ/I`э0+1+an(euk/yt-1)) в виде суммы напряжений на переходах:

Страницы: 1, 2, 3



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать