Усилитель мощности для 1-12 каналов TV

3.3.2 Выбор транзистора


Выбор транзистора осуществляется с учётом следующих предельных параметров:

1.                      граничной частоты усиления транзистора по току в схеме с ОЭ

;

2.                    предельно допустимого напряжения коллектор-эмиттер

;

3.                      предельно допустимого тока коллектора

;

4.                      предельной мощности, рассеиваемой на коллекторе

.

Этим требованиям полностью соответствует транзистор КТ934Б. Его основные технические характеристики приведены ниже.[1]

Электрические параметры:

1.                      Граничная частота коэффициента передачи тока в схеме с ОЭ МГц;

2.                      Постоянная времени цепи обратной связи  при  В пс;

3.                      Статический коэффициент передачи тока в схеме с ОЭ ;

4.                      Ёмкость коллекторного перехода при  В пФ;

5.                      Индуктивность вывода базы нГн;

6.                      Индуктивность вывода эмиттера нГн.

Предельные эксплуатационные данные:

1.                      Постоянное напряжение коллектор-эмиттер В;

2.                      Постоянный ток коллектора А;

3.                      Постоянная рассеиваемая мощность коллектора  Вт;


3.3.3 Расчёт эквивалентной схемы транзистора


Существует много разных моделей транзистора. В данной работе произведён расчёт моделей: схемы Джиаколетто и однонаправленной модели на ВЧ.

В соответствии с [2, 3,], приведенные ниже соотношения для расчета усилительных каскадов основаны на использовании эквивалентной схемы замещения транзистора приведенной на рисунке 3.3.7, либо на использовании его однонаправленной модели [2, 3] приведенной на рисунке 3.3.8

А)   Расчёт схемы Джиаколетто:

Схема Джиаколетто представлена на рисунке 3.3.7.

Рисунок 3.3.7 Схема Джиаколетто.


Найдем при помощи постоянной времени цепи обратной связи сопротивление базового перехода по формуле:

                              (2.9)

При чём  и  доложны быть измерены при одном напряжении Uкэ. А так как справочные данные приведены при разных напряжниях, необходимо воспользоваться формулой перехода, котоая позволяет вычислить  при любом значении напряжения Uкэ:   

                      (2.10)

в нашем случае:

Подставим полученное значение в формулу    :

, тогда

Найдем значения остальных элементов схемы:

, где                                                                    (2.11)

  – сопротивление эмиттеного перехода транзистора

Тогда

Емкость эмиттерного перехода:

Выходное сопртивление транзистора:

                                                              (2.12)

                                                                                                  (2.13)

                                                     

Б) Расчёт однонаправленной модели на ВЧ:

Схема однонаправленной модели на ВЧ представлена на рисунке 3.3.8 Описание такой модели можно найти в [3].

Рисунок 3.3.8 однонаправленная модель транзистора


Параметры эквивалентной схемы рассчитываются по приведённым ниже формулам.

Входная индуктивность:

,

где –индуктивности выводов базы и эмиттера, которые берутся из справочных данных.

Входное сопротивление:

,                                                                  (3.3.4)

Выходное сопротивление имеет такое же значение, как и в схеме Джиаколетто:

.

Выходная ёмкость- это значение ёмкости   вычисленное в рабочей точке:

.


3.3.4 Расчёт цепей термостабилизации


При расчёте цепей термостабилизации нужно для начала выбрать вариант схемы. Существует несколько вариантов схем термостабилизации: пассивная коллекторная, активная коллекторная и эмиттерная. Их использование зависит от мощности каскада и от того, насколько жёсткие требования к термостабильности. Рассмотрим эти схемы.


3.3.4.1 Эмиттерная термостабилизация


Эмитерная стабилизация применяется в основном в маломощных каскадах и является достачно простой в расчёте и при этом эффективной. Схема эмиттерной термостабилизации приведена на рисунке 3.3.9. Метод расчёта и анализа эмиттерной термостабилизации подробно описан в [4].

Рисунок 3.3.9 эммитерная термостабилизация


Расчёт производится по следующей схеме:

1.Выбираются напряжение эмиттера  и ток делителя , а также напряжение питания ;

2. Затем рассчитываются .

Напряжение эмиттера  выбирается равным . Ток делителя  выбирается равным , где - базовый ток транзистора и вычисляется по формуле:

мА.

 А

Учитывая то, что в коллекторной цепи отсутствует резистор, то напряжение питания рассчитывается по формуле В. Расчёт величин резисторов производится по следующим формулам:

   Ом;

 Ом;

 Ом;


3.3.4.2 Активная коллекторная термостабилизация


Активная коллекторная термостабилизация используется в мощных каскадах и является достаточно эффективной, её схема представлена на рисунке 3.3.10. Её описание и расчёт можно найти в [5].

Рисунок 3.3.10  Схема активной коллекторной термостабилизации.


В качестве VT1 возьмём КТ814А. Выбираем падение напряжения на резисторе  из условия (пусть В), тогда . Затем производим следующий расчёт:

;                                                                                   (3.3.11)

;                                                                              (3.3.12)

;                                                                         (3.3.13)

;                                                                            (3.3.14)

,                                                                            (3.3.15)

где  – статический коэффициент передачи тока в схеме с ОБ транзистора КТ814;

;                                                                            (3.3.16)

;                                                                               (3.3.17)

.                                                                       (3.3.18)

Получаем следующие значения:

Ом;

мА;

В;

А;

А;

Ом;

Ом.

Величина индуктивности дросселя выбирается таким образом, чтобы переменная составляющая тока не заземлялась через источник питания, а величина блокировочной ёмкости – таким образом, чтобы коллектор транзистора VT1 по переменному току был заземлён.


3.3.4.3 Пассивная коллекторная термостабилизация


Наиболее экономичной и простейшей из всех схем термостабилизации является коллекторная стабилизация. Стабилизация положения точки покоя осуществляется отрицательной параллельной обратной связью по напряжению, снимаемой с коллектора транзистора. Схема коллекторной стабилизации представлена на рисунке 3.3.11.


Рисунок 3.3.11  Схема пассивной коллекторной термостабилизации


Рассчитаем основные элементы схемы по следующим формулам:









Выберем напряжение URк=5В и рассчитаем значение сопротивления Rк.


Зная базовый ток рассчитаем сопротивление Rб

Определим рассеиваемую мощность на резисторе Rк


Как было сказано выше, эмиттерную термостабилизацию в мощных каскадах применять “невыгодно” так как на резисторе, включённом в цепь эмиттера, расходуется большая мощность. В нашем случае лучше выбрать активную коллекторную стабилизацию.


3.4              Расчёт входного каскада


3.4.1 Выбор рабочей точки


При расчёте режима предоконечного каскада условимся, что питание всех каскадов осуществляется от одного источника напряжения с номинальным значением Eп. Так как Eп=Uк0, то соответственно Uк0 во всех каскадах берётся одинаковое, то есть Uк0(предоконечного к.)=Uк0(выходного к).   Мощность, генерируемая предоконечным каскадом должна быть в коэффициент усиления выходного каскада вместе с МКЦ(S210) раз меньше, следовательно, и Iк0, будет во столько же раз меньше. Исходя из вышесказанного координаты рабочей точки примут следующие значения: Uк0= 15 В; Iко=0.4/2.058= 0.19 А. Мощность, рассеиваемая на коллекторе Pк= Uк0 Iк0=2.85 Вт.


3.4.2 Выбор транзистора


Выбор транзистора был произведён в пункте 3.3.5.2 Выбор входного транзистора осуществляется в соответствии с требованиями, приведенными в пункте 3.3.2. Этим требованиям отвечает транзистор КТ913А. Его основные технические характеристики приведены ниже.[1]

Электрические параметры:

1.        граничная частота коэффициента передачи тока в схеме с ОЭ МГц;

2.        Постоянная времени цепи обратной связи пс;

Страницы: 1, 2, 3, 4, 5, 6



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать