Усилитель радиорелейной линии связи

tс=8 пс и Ск=0,7 пФ при Uкэ=10 В, b0=150, Uкэ0(доп)=10 В, Iк0(доп)=30 мА,

Рк расс(доп)=0,1 Вт, fт=4,5 ГГц, Lб=2,5 нГн, Lэ=2,5 нГн.

2.2.2 Выбор транзистора и расчет эквивалентной схемы замещения.

 


2.2.2.1Расчёт параметров схемы Джиаколетто.


Рисунок 2.2.2.1.1- Эквивалентная схема биполярного

транзистора (схема Джиаколетто).


Проведём расчёт элементов эквивалентной схемы замещения транзистора [4], используя паспортные данные:

Ск(треб)=Ск(пасп)*=0,7×=0,9 (пФ),

где    Ск – ёмкость коллекторного перехода;

rб= =11,43 (Ом); gб==0,0875 (Cм),

где    rб и gб сопротивление и проводимость базы соответственно,

         τс – постоянная времени цепи обратной связи;

rэ= =1,82 (Ом), - сопротивление эмиттера,

где    Iк0 взят в мА;

gбэ==0,0036 (См), – проводимость перехода база-эмиттер,

где    β0 – статический коэффициент передачи тока в схеме с ОЭ;

Cэ==24,3 (пФ), - ёмкость эмиттерного перехода,

где    fт граничная частота транзистора;

Ri= =333 (Ом), gi=0.003(См),

где Ri и gi выходные сопротивление и проводимость транзистора соответственно.


2.2.2.2Расчёт однонаправленной модели транзистора.


Данная модель применяется в области высоких частот [5].









Рисунок 2.2.2.2.1- Однонаправленная модель транзистора.


Lвх= Lб+Lэ=(2,5+2,5)нГн=5 (нГн) – входная индуктивность транзистора,

где   Lб и Lэ индуктивности базы и эмиттера соответственно;

Rвх=rб=11,43 (Ом) – входное сопротивление;

Rвых=Ri=333 (Ом) – выходное сопротивление;

Свых=Ск(треб)=0,9 (пФ) – выходная ёмкость;

fmax=fт=4,5 (ГГц) – максимальная граничная частота.

 

2.2.3 Расчёт и выбор схемы термостабилизации.

 

2.2.3.1 Эмитерная термостабилизация.



Эмитерная термостабилизация [5] широко используется в маломощных каскадах, так как потери мощности в ней при этом не значительны и её простота исполнения вполне их компенсирует, а также она хорошо стабилизирует ток коллектора в широком диапазоне температур при напряжении на эмиттере более 3В.


Рисунок 2.2.3.1.1- Каскад с эмитерной термостабилизацией.


Рассчитаем параметры элементов данной схемы.

URэ=(2÷5)=3 (В);

Eп=Uкэ0+URэ=3+3=6 (В);

Rэ= ==136,4 (Ом);


Rб1=, Iд=10×Iб, Iб=, Iд=10× =10×=1,46 (мА),

где     Iд ток базового делителя,

          Iб ток базы;

Rб1==1575 (Ом), - элемент базового делителя;

Rб2= =2534 (Ом), - элемент базового делителя.

Наряду с эмитерной термостабилизацией используются пассивная и активная коллекторные термостабилизации [5].


2.2.3.2 Пассивная коллекторная термостабилизация:

Рисунок 2.2.3.2.1- Схема пассивной коллекторной термостабилизации.

URк=6 (В);

Rк=URк/Iк0=6/0.022=273 (Ом);

Eп=Uкэ0+URк=9 (В);

Iб==0.022/150=0,146 (мА),

Rб= =15,7 (КОм).

Ток базы определяется величиной Rб. При увеличении тока коллектора напряжение в точке А падает и следовательно уменьшается ток базы, а значит уменьшает ток коллектора. Но чтобы стал изменяться ток базы, напряжение в точке А должно измениться на 10-20%, то есть Rк должно быть очень велико, что применимо только в маломощных каскадах. Но, так как мы будем применять перекрёстные обратные связи, то данная схема нам не подходит.


2.2.3.3 Активная коллекторная термостабилизация.


Можно сделать так, чтобы Rб зависило от напряжения в точке А см. рис.(2.2.3.2.1). Получим что при незначительном уменьшении (увеличении) тока коллектора значительно увеличится (уменьшится) ток базы. И вместо большого Rк можно поставить меньшее на котором бы падало порядка 1В см. рис.(2.2.3.3.1).

b2=50;

UR4 >1 B; UR4 =2 (B);

R4===91 (Ом);

Eп=Uкэ0+UR4=5 (В); 

Iб1= Iк0/β01=0,022/150=146 (мкА);

Iб1= Iк02;

Uкэ02= Uкэ01/2=1,5 (B);

Iд=10×Iб2=10×=9,6 (мкA);

R3==280 (КОм);

R1==240 (кОм);


R2==5450 (Ом).

Рисунок 2.2.3.3.1- Активная коллекторная термостабилизация.


Данная схема требует значительное количество дополнительных элементов, в том числе и активных. Если Сф утратит свои свойства, то каскад самовозбудится и будет не усиливать, а генерировать, т.е. данный вариант не желателен, поскольку параметры усилителя должны как можно меньше зависеть от изменения параметров его элементов, по заданию. Основываясь на проведённом выше анализе схем термостабилизации выберем эмитерную.


2.3 Расчёт усилителя.

 


Схема усилительных каскадов по переменному току приведена на рисунке 2.3.1 [1].

Рисунок 2.3.1 - Схема усилительных каскадов с перекрестными ООС

 

При заданном коэффициенте усиления схема с перекрёстными обратными связями обладает большей полосой пропускания, которая практически не сокращается при увеличении числа каскадов, что объясняется комплексным характером обратной связи на высоких частотах [1]. Рассчитаем усилитель на 4-х каскадах. Для того, чтобы схема была согласована по входу и по выходу, требуется соблюдение условия:

;                                                                                    (2.3.1)

При выполнении условия (2.3.1) и при пренебрежении величинами второго порядка малости, коэффициент усиления двухтранзисторного варианта усилителя изображенного на рисунке 2.3.1 описывается выражением

;                                                                (2.3.2)

где ;                                                                       (2.3.3)

;                                                                               (2.3.4)

;                                                                     (2.3.5)

;                                                                                              (2.3.6)

Выберем К=0.5 и произведём расчет , ,по формулам (2.3.3-2.3.5):

К0==2,125;

b1==3,375;

b2==3,625.

 двухтранзисторного варианта усилителя равна

                                                  (2.3.7)

где     =89,2 (пс)

;                                                                                                  (2.3.8)

,                                                                                              (2.3.9)

Мн = 3 dB – допустимые частотные искажения.

По формуле (2.3.7) с помощью формул(2.3.8-2.3.9) произведём расчет :

;

;

=713 (МГц);

При увеличении числа каскадов усилителя, его  практически не меняется и может быть рассчитана по эмпирической зависимости

,                                                                             (2.3.10)

где n - общее число каскадов;  - верхняя частота полосы пропускания двухтранзисторного варианта усилителя, рассчитываемая по формуле (2.3.7).

 (МГц).

Подключение дополнительных каскадов усиления к двухтранзисторному варианту усилителя приводит к возрастанию усиления в  раз, где n - общее число каскадов, и общий коэффициент усиления, в этом случае, равен:

.

Кu(общ)= (раз), что соответствует 18,6 dB;

Из формулы (2.3.6) вычислим Rос, потом выразим Rэ, оно будет являться сопротивлением ООС и назовём его :

 (Ом);

 (Ом);

; (Ом);


Рисунок 2.3.2- Радиорелейный усилитель на четырёх каскадах.


2.4 Расчёт ёмкостей и дросселей.


Проводимый ниже расчёт основан на [4].

 (пФ);

 (мкГн);

На нижних частотах неравномерность АЧХ обусловлена ёмкостями Ср и Сэ, поэтому пусть 1,5 dB вносят Ср и столько же Сэ.

 ,                                                                         (2.4.1)

где     R1 и R2 сопротивления соответственно слева и справа от Ср

Yн допустимые искажения вносимые одной ёмкостью.

 (dB),  (раз), для Ср1 и

 (раз), для Сэ.

R1=Rвых(каскада), R2=Rвх(каскада)=Rн=50 (Ом), для Ср1 (межкаскадной),

R1=Rг=Rвых(3-го каскада)=50 (Ом), R2=Rвх(каскада)=Rн=50 (Ом), для Ср2,

;

; ;

;

 (Ом).

По формуле (2.4.1) рассчитаем Ср.

 (пФ);

 (пФ);

;

;

 (нс);

 (пФ).



                                   

 




 



РТФ КП 468730.001 ПЗ

 




 




Лит

Страницы: 1, 2, 3



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать