У человека имеется пять органов чувств, но один из них особенно важен — это зрение. Глазами человек воспринимает большую часть информации об окружающем его мире в 100 раз больше, чем посредством слуха, не говоря уже об осязании, обонянии и вкусе.
Далее человек заметил ”посторонний источник света” — солнце. Он
использовал огонь, а затем различные виды искусственных световых источников для подачи сигналов. Теперь в руках человека был как световой источник, так и процесс модуляции света. Он фактически построил то, что сегодня мы называем оптической линией связи или оптической системой связи, включающей передатчик (источник), модулятор, оптическую кабельную линию и приемник (глаз). Определив в качестве модуляции преобразование механического сигнала в оптический, например открытие и закрытие источника света, мы можем наблюдать в приемнике обратный процесс — демодуляцию: преобразование оптического сигнала в сигнал другого рода для дальнейшей обработки в приемнике.
Такая обработка может представлять собой, например, превращение
светового образа в глазу в последовательность электрических импульсов
нервной системы человека. Головной мозг включается в процесс обработки как последнее звено цепи.
Другим, очень важным параметром, используемым при передаче сообщений, является скорость модуляции. Глаз в этом отношении имеет ограничения. Он хорошо приспособлен к восприятию и анализу сложных картин окружающего мира, но не может следить за простыми колебаниями яркости, когда они следуют быстрее 16 раз в секунду.
История развития линий связи
Линии связи возникли одновременно с появлением электрического телеграфа. Первые линии связи были кабельными. Однако вследствие несовершенства конструкции кабелей подземные кабельные линии связи вскоре уступили место воздушным. Первая воздушная линия большой протяженности была построена в 1854 г. между Петербургом и Варшавой. В начале 70-х годов прошлого столетия была построена воздушная телеграфная линия от Петербурга до Владивостока длиной около 10 тыс. км. В 1939 г. была пущена в эксплуатацию величайшая в мире по протяженности высокочастотная телефонная магистраль Москва—Хабаровск длиной 8300 км.
Создание первых кабельных линий связано с именем русского ученого П. Л. Шиллинга. Еще в 1812 г. Шиллинг в Петербурге демонстрировал взрывы морских мин, использовав для этой цели созданный им изолированный проводник.
В 1851 г. одновременно с постройкой железной дороги между Москвой и Петербургом был проложен телеграфный кабель, изолированный гуттаперчей. Первые подводные кабели были проложены в 1852 г. через Северную Двину и в 1879 г. через Каспийское море между Баку и Красноводском. В 1866 г. вступила в строй кабельная трансатлантическая магистраль телеграфной связи между Францией и США,
В 1882—1884 гг. в Москве, Петрограде, Риге, Одессе были построены первые в России городские телефонные сети. В 90-х годах прошлого столетия на городских телефонных сетях Москвы и Петрограда были подвешены первые кабели, насчитывающие до 54 жил. В 1901 г. началась постройка подземной городской телефонной сети.
Первые конструкции кабелей связи, относящиеся к началу XX века, позволили осуществлять телефонную передачу на небольшие расстояния. Это были так называемые городские телефонные кабели с воздушно-бумажной изоляцией жил и парной их скруткой. В 1900—1902 гг. была сделана успешная попытка повысить дальность передачи методами искусственного увеличения индуктивности кабелей путем включения в цепь катушек индуктивности (предложение Пупина), а также применения токопроводящих жил с ферромагнитной обмоткой (предложение Крарупа). Такие способы на том этапе позволили увеличить дальность телеграфной и телефонной связи в несколько раз.
Важным этапом в развитии техники связи явилось изобретение, а начиная с 1912—1913 гг. освоение производства электронных ламп. В 1917 г. В. И. Коваленковым был разработан и испытан на линии телефонный усилитель на электронных лампах. В 1923 г. была осуществлена телефонная связь с усилителями на линии Харьков—Москва—Петроград.
В 30-х годах началось развитие многоканальных систем передачи. В последующем стремление расширить спектр передаваемых частот и увеличить пропускную способность линий привело к созданию новых типов кабелей, так называемых коаксиальных. Но массовое изготовление их относится лишь к 1935 г., к моменту появления новых высококачественных диэлектриков типа эскапона, высокочастотной керамики, полистирола, стирофлекса и т. д. Эти кабели допускают передачу энергии при частоте токов до нескольких миллионов герц и позволяют производить по ним передачу телевизионных программ на большие расстояния. Первая коаксиальная линия на 240 каналов ВЧ телефонирования была проложена в 1936 г. По первым трансатлантическим подводным кабелям, проложенным в 1856 г., организовывали лишь телеграфную связь, и только через 100 лет, в 1956 г., была сооружена подводная коаксиальная магистраль между Европой и Америкой для многоканальной телефонной связи.
В 1965—1967 гг. появились опытные волноводные линии связи для передачи широкополосной информации, а также криогенные сверхпроводящие кабельные линии с весьма малым затуханием. С 1970 г. активно развернулись работы по созданию световодов и оптических кабелей, использующих видимое и инфракрасное излучения оптического диапазона волн.
Создание волоконного световода и получение непрерывной генерации полупроводникового лазера сыграли решающую роль в быстром развитии волоконно-оптической связи. К началу 80-х годов были разработаны и испытаны в реальных условиях волоконно-оптические системы связи. Основные сферы применения таких систем — телефонная сеть, кабельное телевидение, внутри объектовая связь, вычислительная техника, система контроля и управления технологическими процессами и т. д.
В России и других странах проложены городские и междугородные волоконно-оптические линии связи. Им отводится ведущее место в научно-техническом прогрессе отрасли связи.
Конструкция и характеристика оптических кабелей связи
Разновидности оптических кабелей связи
Оптический кабель состоит из скрученных по определенной системе оптических волокон из кварцевого стекла (световодов), заключенных в общую защитную оболочку. При необходимости кабель может содержать силовые (упрочняющие) и демпфирующие элементы.
Существующие ОК по своему назначению могут быть классифицированы на три группы: магистральные, зоновые и городские. В отдельные группы выделяется подводные, объектовые и монтажные ОК.
Магистральные ОК предназначаются для передачи информации на большие расстояния и значительное число каналов. Они должны обладать малыми затуханием и дисперсией и большой информационно-пропускной способностью. Используется одномодовое волокно с размерами сердцевины и оболочки 8/125 мкм. Длина волны 1,3...1,55 мкм.
Зоновые ОК служат для организации многоканальной связи между областным центром и районами с дальностью связи до 250 км. Используются градиентные волокна с размерами 50/125 мкм. Длина волны 1,3 мкм.
Городские ОК применяются в качестве соединительных между городскими АТС и узлами связи. Они рассчитаны на короткие расстояния (до |10 км) и большое число каналов. Волокна-градиентные (50/125 мкм). Длина волны 0,85 и 1,3 мкм. Эти линии, как правило, работают без промежуточных линейных регенераторов.
Подводные ОК предназначаются для осуществления связи через большие водные преграды. Они должны обладать высокой механической прочностью на разрыв и иметь надежные влагостойкие покрытия. Для подводной связи также важно иметь малое затухание и большие длины регенерационных участков.
Объектовые ОК служат для передачи информации внутри объекта. Сюда относятся учрежденческая и видеотелефонная связь, внутренняя сеть кабельного телевидения, а также бортовые информационные системы подвижных объектов (самолет, корабль и др.).
Монтажные ОК используются для внутри- и межблочного монтажа аппаратуры. Они выполняются в виде жгутов или плоских лент.
Оптические волокна и особенности их изготовления
Основным элементом ОК является оптическое волокно (световод), выполненное в виде тонкого стеклянного волокна цилиндрической формы, по которому передаются световые сигналы с длинами волны 0,85...1,6 мкм, что соответствует диапазону частот (2,3...1,2) • 1014 Гц.
Световод имеет двухслойную конструкцию и состоит из сердцевины и оболочки с разными показателями преломления . Сердцевина служит для передачи электромагнитной энергии. Назначение оболочки — создание лучших условий отражения на границе “сердцевина — оболочка” и защита от помех из окружающего пространства.
Сердцевина волокна, как правило, состоит из кварца, а оболочка может быть кварцевая или полимерная. Первое волокно называется кварц—кварц, а второе кварц—полимер (кремнеор-ганический компаунд). Исходя из физико-оптических характеристик предпочтение отдается первому. Кварцевое стекло обладает следующими свойствами: показатель преломления 1,46, коэффициент теплопроводности 1,4 Вт/мк, плотность 2203 кг/м3.
Снаружи световода располагается защитное покрытие для предохранения его от механических воздействий и нанесения расцветки. Защитное покрытие обычно изготавливается двухслойным: вначале кремнеорганический компаунд (СИЭЛ), а затем—эпоксидакрылат, фторопласт, нейлон, полиэтилен или лак. Общий диаметр волокна 500...800 мкм
В существующих конструкциях ОК применяются световоды трех типов: ступенчатые с диаметром сердцевины 50 мкм, градиентные со сложным (параболическим) профилем показателя преломления сердцевины и одномодовые с тонкой сердцевиной (6...8 мкм)
По частотно-пропускной способности и дальности передачи лучшими являются одномодовые световоды, а худшими — ступенчатые.
Важнейшая проблема оптической связи — создание оптических волокон (ОВ) с малыми потерями. В качестве исходного материала для изготовления ОВ используется кварцевое стекло , которое является хорошей средой для распространения световой энергии. Однако, как правило, стекло содержит большое количество посторонних примесей, таких как металлы (железо, кобальт, никель, медь) и гидроксильные группы (ОН). Эти примеси приводят к существенному увеличению потерь за счет поглощения и рассеяния света. Для получения ОВ с малыми потерями и затуханием необходимо избавиться от примесей, чтобы было химически чистое стекло.