Вторичный источник электропитания с защитой от перегрузок

 Стабилизаторы классифицируют по ряду признаков:

по роду стабилизируемой величины – стабилизаторы напряжения и тока;

по способу стабилизации – параметрические и компенсационные стабилизаторы.

В настоящее время широкое применение получили компенсационные стабилизаторы, которые подразделяют на стабилизаторы непрерывного и импульсного регулирования. При параметрическом способе стабилизации используют некоторые приборы с нелинейной вольтамперной характеристикой, имеющий пологий участок, где напряжение мало зависит от дестабилизирующих факторов. К таким приборам относят стабилитроны, бареттеры, лампы накаливания и др. при компенсационном способе стабилизации постоянство напряжения обеспечивается за счет автоматического регулирования выходного напряжения источника питания. Это достигается за счет введения отрицательной обратной связи между выходом и регулирующим элементом, которое изменяет свое сопротивление так, что компенсирует возникшее отклонение выходной величины.

Основным параметром, характеризующим качество работы всех стабилизаторов, является коэффициент стабилизации. Как отмечалось определяющими дестабилизирующими факторами, из-за которых изменяются выходные величины стабилизатора, являются входное напряжение стабилизатора UВХ и нагрузочный ток IН.

Для стабилизатора напряжения коэффициент стабилизации равен

KстU=(ΔUВХ/UВХ)/(ΔUВЫХ/UВЫХ),

где ΔUВХ и ΔUВЫХ – приращение входного и выходного напряжений, а UВХ и UВЫХ – номинальные значения входного и выходного напряжений.

Параметрический стабилизатор

С помощью параметрического стабилизатора, в котором применяется полупроводниковый стабилитрон Д, можно получать стабилизированное напряжение от нескольких вольт до нескольких сотен вольт при токах от единиц миллиампер до единиц ампер. Если необходимо стабилизировать напряжение менее 3 В, то вместо стабилитронов используют стабисторы.

Стабилитрон в параметрическом стабилизаторе включают параллельно нагрузочному резистору RH. Последовательно со стабилитроном для создания требуемого режима работы включают балластный резистор RВ.

Для нормальной работы параметрического стабилизатора сопротивление резистора RВ должно быть таким, чтобы его вольт - амперная характеристика пересекла  вольт – амперную характеристику стабилитрона в точке, соответствующей номинальному току стабилитрона и IСТ.НОМ, значение которого указано в паспортных данных стабилитрона.

Коэффициент стабилизации параметрического стабилизатора напряжения на полупроводниковом стабилитроне может достигать 30 – 50.

Компенсационный стабилизатор

Компенсационные стабилизаторы напряжения обладают более высоким коэффициентом стабилизации и меньшим выходным сопротивлением по сравнению с параметрическими. Их принцип работы основан на том, что изменения напряжения на нагрузке передается на специально вводимый в схему регулирующий элемент, препятствующий изменению напряжения UН.

Регулирующий элемент может быть включен либо параллельно нагрузке, либо последовательно с ней. В зависимости от этого различают два типа компенсационных стабилизаторов напряжения: параллельные и последовательные

Воздействие на регулирующий элемент в обоих типах стабилизаторов осуществляется управляющей схемой, в которую входят усилитель постоянного тока У  и источник опорного напряжения ИОН. С помощью ИОН производят сравнения напряжения на нагрузке с опорным напряжением. Функция усилителя сводится к усилению разности сравниваемых напряжений и подаче усиленного сигнала непосредственно на регулирующий элемент.

В параллельном компенсационном стабилизация напряжения на нагрузке достигается, как и в параметрическом стабилизаторе, изменением напряжения на балластном резисторе RВ путем изменения тока регулирующего элемента. Если принять входное напряжение стабилизатора неизменным, то постоянству напряжения на нагрузке будет соответствовать постоянство напряжения на балластном резисторе.

В последовательном стабилизаторе регулирующий элемент включен последовательно с нагрузкой. Стабилизация напряжения нагрузки осуществляется путем напряжения на регулирующем элементе. Ток регулирующего элемента здесь равен току нагрузки.

В соответствии с рассмотренным принцип действия компенсационных стабилизаторов постоянного напряжения основан на изменении сопротивления регулирующего элемента. Наличие регулирующего элемента обуславливается неизбежной потерей в стабилизаторе.

Также существую компенсационные стабилизаторы напряжения с импульсным регулированием. Принцип действия такого стабилизатора  заключается в преобразовании регулирующим элементом постоянного напряжения питании UП в последовательность периодических импульсов прямоугольной формы .

Основными преимуществами, которыми обладают компенсационные стабилизаторы напряжения с импульсным  регулированием, являются: высокий КПД,  меньшая масса и габариты по сравнению с другими компенсационными стабилизаторами.

Недостатками являются относительная сложность схемы, повышенный уровень пульсаций выходного напряжения, невысокие динамические характеристики.


2. Выбор и обоснование структурной схемы

По заданию надо разработать стабилизатор напряжения, который обеспечивает достаточно большой ток (5 А) при напряжении (18 В).

Поэтому в качестве стабилизатора нежелательно использовать параметрический стабилизатор напряжения, который малоэффективен при высоком токе нагрузки IН, а также нежелательно использовать и импульсный стабилизатор, который не обеспечивает должного уровня сглаживания пульсаций на выходе.

Остановим выбор на компенсационном стабилизаторе.

Схемы компенсационных стабилизаторов постоянного напряжения бывают последовательного и параллельного типов [1].

Рисунок 2

 
 













Рисунок 3

 
 













        Различие приведенных схем состоит в следующем. В последовательных стабилизаторах напряжение на регулирующем элементе возрастает при увеличении напряжения на нагрузке, а ток приблизительно равен току нагрузки. В параллельных стабилизаторах напряжение на регулирующем элементе не зависит от входного напряжения, а ток находится в прямой зависимости от напряжения на нагрузке.

        Параллельные стабилизаторы не чувствительны к перегрузкам по току, так как с увеличением  тока Iн ток регулирующего элемента уменьшается. При токах Iн, заметно больших расчётного значения Iн.макс, регулирующий элемент запирается. При коротком замыкании на выходе напряжение Uвx полностью падает на балластном сопративлении Ro и регулирующий транзистор оказывается в не опасности. Последовательные стабилизаторы чувствительны к перегрузкам, поскольку ток нагрузки и ток регулирующего элемента возрастают одновременно и в равной степени. При токах Iн>Iн.макс усилительный и опорный элементы оказываются запертыми, а регулирующий транзистор работает с максимальным базовым током, определяемым величиной токоотводящего сопротивления и разностью потенциалов Uвх-Uвых. Короткое замыкание на выходе (Uвых=0) увеличивает базовый ток регулирующего транзистора и напряжение на нём обычно в несколько раз. При этом рассеиваемая мощность возрастает на порядок и больше и транзистор неизбежно выходит из строя. Этот недостаток последовательных стабилизаторов заставляет дополнять их схему тем или иным типом защиты.

Такая защита при заданном повышении нагрузочного тока над расчётным значением Iн.макс либо быстро снимает напряжение питания, либо резко уменьшает ток регулирующего транзистора, отключая его базу от токоотводящего резитсра.

При одном и том же выходном напряжении и обчных значениях допусков в последовательных стаблизаторах требуется менее высоковольтный транзистор, чем в параллельных. Однако этот вывод не учитывает аварийной ситуации, когда на регулирующем транзисторе может в течении короткого времени действовать полное напряжение питания. Поэтому практически в обоих типах стабилизаторов ориентируются на одно и то же условие Up.доп≥Uвх.макс. Усилительные транзисторы выбирают из того же условия, что и регулирующий элемент.

При одном и том же токе нагрузке в параллельных стабилизаторах требуется примерно вдвое более сильноточные транзисторы, чем в последовательных. По мощности разница получается ещё больше. Однако при наличии «гасящего» сопративления в параллельных стабилизаторах разница в допустимой мощности регулирующих элементов делается практически несущественной.

Коэффициент полезного действия у последовательных стабилизаторов зависит от напряжения Uр.мин, которое не входит в выражении для параллельных стабилизаторов. Поэтому однозначное сравнение, строго говоря, невозможно. Всё же, КПД у последовательных стабилизаторов несомненно выше, чем у параллеьных.

Таким образом, при решении конткретных задач параллельные стабилизаторы могут быть практически равноценным, а с учётом перегрузочной способности – даже оптимальным вариантом.

Учитывая всё выше сказанное, выбираем компенсационный параллельный стабилизатор.

Согласно заданию курсовой работы, нам необходимо разработать вторичный источник электропитания с защитой от перегрузок. Параллельный компенсационный стабилизатор идеально подходит условию защиты от перегрузок. Тем более, что целью разработки данного источника питания является ничто иное, как получение более стабильного напряжение. КПД схемы и Кст не являеются решающими величинами в расчёте. Поэтому, я считаю, оптимальным выбром для построения вторичного источника питания с защитой от перегрузок является компенсациооный стабилизатор параллельного типа.


Структурная схема компенсационного стабилизатора параллельного типа.

Iy

Страницы: 1, 2, 3



Реклама
В соцсетях