1 — металлическое межсоединение; 2 — слой SiO2;
А, Б, В, — соответствующие друг другу точки на рис. а и б.
При конструировании ИС стремятся применять диоды эквивалентные переходам эмиттер-база или коллектор-база транзисторной структуры. В этом случае диоды изготавливают в едином технологическом цикле с остальными элементами.
Соединение элементов в полупроводниковой ИС может осуществляться несколькими способами, основным из которых является нанесение металлических тонкопленочных проводящих дорожек (чаще всего алюминиевых), изолированных от элементов кристалла слоем диэлектрика, чаще всего оксида кремния SiO2; с помощью проволочных соединений.
Количество кристаллов ИС, получаемых в едином технологическом процессе на одной пластине, чаще всего кремния, зависит от размера кристалла, в свою очередь зависящего от количества элементов в схеме, и диаметра пластин. Площадь кристалла ИС в зависимости от ее сложности составляет 1...100 мм2, наиболее распространены размеры 10...50 мм2.
6.3. Элементы ИС на МДП-структуре.
В качестве активных элементов в ИС могут использоваться кроме биполярных полевые транзисторы со структурой «металл-диэлектрик (оксид)-полупроводник», т.е. МДП-транзисторы или МОП-транзисторы. В соответствии с этим все монолитные ИС разделяются на три основных вида: МДП ИС (МОП ИС), биполярные и биполярно-полевые ИС. МДП ИС могут быть реализованы на транзисторах с каналом p-типа (p-МДП ИС, p-МОП ИС) и каналом n-типа (n-МДП ИС, n-МОП ИС), а также на комплементарных, т. е. использующих одновременно p- и n-типы, МДП-транзисторах (КМДП ИС, КМОП ИС). Биполярно-полевые ИС представляют собой объединенные в одном кристалле биполярные и КМДП ИС (БиКМДП ИС, БиКМОП ИС).
Основными элементами современных МДП ИС являются МДП-транзисторы с каналом n-типа. Площадь этих транзисторов на кристалле значительно меньше, чем биполярных, поэтому в ИС на n-канальных МДП-резисторах достигается самая высокая (в 3-10 раз) степень интеграции, но они уступают биполярным ИС по быстродействию.
Рис. 6.2. Схема полевого транзистора с резистором:
а - эквивалентная схема; б - топология МОП-резистора
В комплементарных МДП ИС применяют МДП-транзисторы с индуцированными каналами n- и р-типа, для этих ИС характерна очень малая потребляемая мощность.
МОП-транзистор может использоваться в качестве конденсатора и резистора, при этом значение емкости и сопротивления можно изменять в определенных пределах путем изменения потенциала на управляющем электроде (т. е. на затворе).
В качестве резистора МДП-транзистор используется при Uзи=0, т. е. при этом сопротивление канала имеет наибольшее значение. Сопротивление между выводами стока и истока в этом случае обратно пропорционально отношению ширины канала b к его длине L, т. е. b/L. Эта зависимость позволяет проводить расчет топологии для получения необходимого сопротивления резистора.
На рис. 6.2 приведена схема
МДП-транзистора, используемого в качестве резистора. Структура МДП-конденсатора
показана на рис. 6.3. Диэлектриком в этом конденсаторе является термически
выращенная пленка диоксида кремния SiO2. Одним из электродов является пленка напыленного металла на SiO2, являющимся диэлектриком, другим —
сильнолегированная n+-область кремния, лежащая под оксидом. Высокоомный n-слой и
p-кремний подложки образуют изолирующий p-n-переход.
Емкость МДП-конденсатора зависит прямо пропорционально площади и обратно
пропорциональна толщине оксидной пленки. Уменьшение толщины оксидной пленки для
получения емкости большей величины имеет ограничения, так как неоднородность
структуры очень тонкой пленки может привести к замыканию обкладок
конденсатора.
Рис.6.3. МДП-конденсатор
Изготавливают МДП ИС методами планарной технологии. Трудоемкость изготовления МДП ИС на 30% ниже, чем биполярных ИС, так как технологический цикл изготовления МДП ИС состоит из 22 основных операций, а биполярных ИС — из 32.
Контрольные вопросы:
1. Дайте определение интегральной схемы.
2. Как различают ИС по технологии изготовления?
3. Расскажите о делении ИС по степени интеграции.
4. Как различают ИС по функциональному назначению?
5. Расскажите об элементах биполярных ИС.
6. Расскажите об элементах ИС на МДП-структурах.
Глава 7. Большие интегральные схемы.
7.1. Общие положения.
Ранее говорилось, что большими интегральными схемами называют полупроводниковые ИС, содержащие более 103 элементов на кристалл.
Развитие современных технологических процессов изготовления ИС позволяет значительно уменьшать минимальные технологические размеры с одновременным увеличением размеров кристалла, т.е. создавать ИС с большой степенью интеграции, называемые большими интегральными (БИС).
БИС являются сложными схемами, реализующими узлы и целые электронные устройства. Различают монолитные и гибридные БИС. Среди монолитных БИС наибольшее распространение получили полупроводниковые БИС на основе МДП-структур, что обусловлено малыми размерами их активных элементов, а также более простой технологией изготовления по сравнению с монолитными БИС на основе биполярных структур.
По функциональному назначению различают БИС, предназначенные для использования в микропроцессорных комплектах в качестве запоминающих устройств, аналого-цифровых и цифровых преобразователей, усилителей и др. БИС являются основной элементной базой микро-ЭВМ, а также широко используются для создания ЭВМ других типов, что обеспечивает повышение их надежности, уменьшение габаритных размеров и массы, а также существенное снижение потребляемой ими мощности.
То есть по функциональному назначению БИС также могут быть цифровыми, или логическими, и аналоговыми, или линейными. К первым относятся декадные счетчики, накапливающие сумматоры, полные арифметические блоки, упоминаемые ранее запоминающие устройства и др.
Специальные БИС для ЭВМ, выполняющие не логические функции, т.е. аналоговые, имеют очень большую номенклатуру. К этим БИС можно отнести усилители записи и считывания различных запоминающих устройств (ЗУ), преобразователи уровней, времязадающие схемы, схемы стабилизаторов напряжений, дифференциальные операционные усилители, компараторы, усилители индикации и др.
Для преобразования аналоговых сигналов в цифровой эквивалент используют аналого-цифровые преобразователи (АЦП), а для обратного преобразования цифровых уровней в аналоговые — цифроаналоговые преобразователи (ЦАП).
АЦП — это электронное устройство, осуществляющее автоматическое преобразование непрерывно изменяющейся аналоговой величины в цифровой код. Процесс аналого-цифрового преобразования в общем случае включает процедуры квантования (дискретизация непрерывной величины по времени, уровню или обоим параметрам одновременно) и кодирования.
Цифроаналоговый преобразователь (ЦАП) — это электронное устройство, осуществляющее автоматическое преобразование числовых кодов в эквивалентные им значения какой-либо физической величины. Выходные физические величины чаще всего представляют собой временные интервалы электрического напряжения или тока.
Развитие техники АЦП и ЦАП осуществлялось поэтапно — от простых наборов ИС, на базе которых конструировали преобразователи, до создания БИС АЦП и БИС ЦАП по различным технологиям.
Отечественной промышленностью серийно выпускались БИС ЦАП типов: К572ПА, К572ПА1, КР572ПА2, К594ПА1, К1108ПА1, К1118ПА1, и БИС АЦП типов: К572ПВ1, К572ПВ2, К1113ПВ1, К1107ПВ1, К1107В2, К1107ПВЗ, К1108ПВ1. Указанные БИС изготовлялись по технологии МОП или биполярной с использованием транзисторно-транзисторной логики.
7.2. Микропроцессоры и микропроцессорные комплекты.
Увеличение уровня интеграции ИС и улучшение их технико-экономических характеристик позволили использовать вычислительные устройства во многих областях: от устройств промышленного оборудования и контрольно-испытательной аппаратуры до ЭВМ. Процесс применения ИС для построения различной вычислительной техники значительно ускорился с применением микропроцессоров.
Название «микропроцессор» связано с исполнением процессора на одном или нескольких кристаллах полупроводниковой ИС. Микропроцессоры служат главными функциональными частями микро-ЭВМ, которые реализуются на БИС. Подготовительным этапом развития микропроцессоров стали микрокалькуляторы. Именно на них были отработаны технологические, схемо-технологические и архитектурные решения, которые широко использовались в дальнейшем при создании первых микропроцессоров.
Микропроцессор — самостоятельное или входящее в состав ЭВМ (электронно-вычислительной машины) устройство, осуществляющее обработку информации и управляющее этим процессом, выполненное в виде одной или нескольких БИС. В общем случае в состав микропроцессора
входят: арифметико-логическое устройство (АЛУ), блок управления и синхронизации, запоминающее устройство (ЗУ), регистры и другие блоки.
АЛУ осуществляет обработку поступающей от ЗУ информации по командам программы, хранящейся постоянно в ЗУ, порядок выполнения которых определяется блоком управления и синхронизации. Исходные данные, промежуточные и окончательные результаты вычислений содержатся в ЗУ или в специальных регистрах. Часть регистров используется для организации выполнения программ.
Как БИС микропроцессоры характеризуются степенью интеграции, потребляемой мощностью, помехоустойчивостью, нагрузочной способностью активных выводов, т. е. возможностью подключения к данному микропроцессору и других ИС, технологией изготовления, типом корпуса, устойчивостью к различным внешним воздействиям.
Как вычислительное устройство микропроцессоры характеризуются производительностью, разрядностью обрабатываемых данных и выполняемых команд, возможностью увеличения разрядности, числом команд, количеством внутренних регистров, объемом адресуемой памяти, наличием и видом программного обеспечения, способом управления и др.
Микропроцессоры, используемые в средствах вычислительной техники различного назначения, называются универсальными, а предназначенные для построения какого-либо одного типа вычислительного устройства, называются специализированными. К последним относятся микропроцессоры, используемые в микрокалькуляторах.
По структуре микропроцессоры подразделяются на секционированные (как правило, с микропрограммным управлением) и однокристальные (с фиксированной разрядностью и постоянным набором команд). Секционированные микропроцессоры обладают способностью к расширению своих функциональных возможностей за счет подключения дополнительных ИС.
Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9