Акустика океана

Акустика океана

Министерство общего и профессионального образования Свердловской области Муниципальное общеобразовательное учреждение «Средняя общеобразовательная школа им. К.Н. Новикова»

Акустика океана

Исполнитель:

Леушкина Любовь Евгеньевна ученица

10 «А» класса

Руководитель:

Понамарева Елена Вячеславовна

г. Качканар, 2009 год


Содержание

Введение

1. Человек и океан

2. Акустика океана

2.1 Рефракция лучей

2.2 Скорость звука

3. Особенности среды океана

3.1 Хребты

3.2 Поверхность дна океана

3.3 Внутренние волны

3.4 Поверхностные волны

Заключение

Список литературы

Приложение

ВВЕДЕНИЕ

«…И вдруг поняв душой всех дерзких снов обман,

Охвачен пламенной, но безутешной думой,

Я горько вопросил безбрежный океан,

Зачем он страстных бурь питает ураган,

Зачем волнуется,— но океан угрюмый,

Свой ропот заглушив, окутался в туман.»

Константин Бальмонт

Много стихов написано про океан. Много сказок, рассказов, воспоминаний связано с ним. Очень много исследований было проведено в водах океана.

Все чаще и чаще человечество связывает свое будущее с океаном. Объем исследований Мирового океана непрерывно растет, ученые разных стран объединяют свои усилия в этих исследованиях. Глубины океана изучают специалисты различных областей науки - биологи, химики, гидродинамики и... акустики.

Почему акустики? Потому что звуковые волны могут распространяться в толще океана на тысячи километров и представляют собой эффективное средство зондирования океана.

Большой объем исследований по акустике океана был выполнен группой советских ученых, работавших под руководством одного из авторов статьи (Л. М. Бреховских). Работы велись как в натурных условиях в открытом океане на научно-исследовательских судах, так и за столами теоретиков в научно-исследовательских институтах. Результаты этой многолетней работы нашли отражение в коллективной монографии "Акустика океана", вышедшей в 1974 г. под редакцией Л. М. Бреховских. Ее авторам (Л. М. Бреховских, Н. С. Агеева, И. Б. Андреева, В. И. Воловов, Ю. Ю. Житковский, Ю. П. Лысанов, А. В. Фурдуев, С. Д. Чупров, Р. Ф. Швачко) в 1976 г. была присуждена Государственная премия.

И я выбрала тему именно про океан, потому что она мне показалась наиболее интересной.

Мои задачи – это:

·          рассмотреть дополнительную литературу по моей теме;

·          рассмотреть особенности среды океана;

·          рассмотреть акустику океана;

Прежде чем обратиться к акустике океана, посмотрим, что представляет собой океан.


1. ЧЕЛОВЕК И ОКЕАН


Многовековая история человеческого общества, весь его путь к прогрессу теснейшим образом связаны с океаном — с мореплаванием, с освоением его огромных пищевых, сырьевых, а позже и топливно-энергетических ресурсов.

“Очень скоро с Океаном, возможно, будет связана проблема самого существования, человечества,”— утверждал известный исследователь морских глубин Жак-Ив Кусто.

“Очень скоро всем нам придется пойти на поклон к богу морей — просить его поделиться с людьми своими богатствами”, “Угроза минерального голода в буквальном смысле заставит человека активно осваивать Океан”,— вторят ему ученые академики — геолог В.И.Смирнов и океанолог Л.М.Бреховских.

Средняя глубина океана вдали от берега - 4-5 км; горизонтальная средняя протяженность - многие тысячи километров. Ширина вдоль экватора Атлантического и Индийского океанов около 6,5 тыс. км, Тихого - около 16 тыс. км, меридиональные размеры океанов еще больше. Площадь водной акватории Мирового океана занимает большую часть поверхности нашей планеты (около 70%). Толщина же этого водного слоя ничтожна, она меньше одной тысячной радиуса Земли. По соотношению глубин и горизонтальных размеров океаны подобны (если отвлечься от кривизны Земли) луже воды на асфальте, глубина которой около полусантиметра, а диаметр более 10 м.

Рельеф суши давно отражен в подробных географических картах, а о рельефе дна огромного пространства Океана до недавнего времени было лишь весьма приблизительное представление. В 1975 году в Советском Союзе был издан геолого-геофизический атлас Индийского океана. В нем много новых подробных карт дна. Океанологами изучен не только рельеф, но и распределение отложений, глубинное строение земной коры, подводные землетрясения, магнитные аномалии. В наши дни Океан изучают разными способами. Трудно исследовать глубины на специальных аппаратах без надежной связи с поверхностью. А радиоволны, служащие нам верой и правдой на Земле и в космосе, гаснут в воде, преодолев лишь десятки-сотни метров. Заменить их пока могут лишь волны акустические.


2. Акустика океана


Сверху океан граничит с атмосферой, снизу - с геологическими породами, слагающими дно: ил, песок, скалы. Обе границы отражают падающие на них из воды звуковые волны, причем верхняя граница - с коэффициентом отражения, близким к 1. Коэффициент отражения от дна значительно меньше; он зависит от геологического строения и нередко оказывается менее 0,3-0,2. Это значит, что интенсивность (мощность) отраженной от дна звуковой волны соответственно в 10-25 раз меньше интенсивности звуковой волны, падающей на дно. Остальная часть энергии проникает в толщу дна и быстро поглощается там. Это исключает возможность распространения звука на большие расстояния при многократных отражениях от границ (Приложение 1).

На большие расстояния звуковая энергия распространяется только вдоль пологих лучей, которые на всем пути не касаются дна океана. В этом случае ограничением, накладываемым средой на дальность распространения звука, является поглощение его в морской воде. Основной механизм поглощения связан с релаксационными процессами, сопровождающими нарушение акустической волной термодинамического равновесия между ионами и молекулами растворенных в воде солей. Интересно отметить, что главная роль в поглощении в широком диапазоне звуковых частот принадлежит серномагниевой соли MgSO4, хотя в процентном отношении ее содержание в морской воде совсем невелико - почти в 10 раз меньше, чем, например, каменной соли NаС1, которая тем не менее не играет заметной роли в поглощении звука.

Поглощение в морской воде, вообще говоря, тем больше, чем выше частота звука. На частотах от 3-5 до по крайней мере 100 кГц, где доминирует указанный выше механизм, поглощение пропорционально частоте в степени примерно 3/2. На более низких частотах включается новый механизм поглощения (возможно, он связан с наличием в воде солей бора), который становится особенно заметным в диапазоне сотен герц; здесь уровень поглощения аномально высок и существенно медленнее падает с уменьшением частоты.

Чтобы более наглядно представить себе количественные характеристики поглощения в морской воде, заметим, что за счет этого эффекта звук с частотой 100 Гц ослабляется в 10 раз на пути в 10 тыс. км, а с частотой 10 кГц - на расстоянии только в 10 км (Приложение 2). Таким образом, только низкочастотные звуковые волны могут быть использованы для дальней подводной связи, для дальнего обнаружения подводных препятствий и т.п.

Если вернуться к Приложению 1 и вспомнить, насколько относительно тонким является водный слой нашей планеты, то может показаться вообще непонятным, как звуковая энергия распространяется на тысячи километров: даже при самом малом, в 2-3°, наклоне лучей, их падение на дно кажется неизбежным. На самом же деле, есть обстоятельства, которые делают условия распространения звука в реальном океане более благоприятными. Эти обстоятельства связаны с искривлением звуковых лучей в вертикальной плоскости, с их рефракцией. Остановимся на этой важнейшей для акустики особенности океана более подробно.

2.1 Рефракция лучей


Голландский математик В. Снеллиус еще 300 лет назад показал, как изменяется направление волн при переходе через границу двух сред с разными значениями c1 и c2 скорости распространения: sinq1/sinq2 = c1/c2 (Приложение 3а. в нижней среде скорость меньше); это известный со школьных времен закон преломления волн, или закон Снеллиуса. Нетрудно обобщить его и на случай среды, где скорость звука изменяется плавно (Приложение 3б): в такой среде волна также поворачивает плавно. И при скачкообразном и при плавном изменении скорости волны всегда "стремятся" повернуть в том направлении, в котором уменьшается скорость их распространения.

2.2 Скорость звука


Скорость звука в океане в среднем близка к 1500 м/с, и ее величина определяется совокупным действием температуры воды, ее солености и статического давления, т.е. веса вышележащих слоев воды. Чем больше температура, этот вес и соленость, тем быстрее бегут звуковые волны. Все три параметра, а, следовательно, и скорость звука, изменяются с глубиной значительно быстрее, чем в горизонтальном направлении; это позволяет приближенно описывать океан как горизонтально-слоистую среду, где скорость звука существенно зависит от глубины, но на каждом горизонте остается неизменной в пределах больших акваторий. Каждый район океана может быть характеризован зависимостью скорости звука от глубины z, или, как принято говорить, профилем скорости звука с(z). Начнем с температуры. Почти повсеместно, кроме полярных морей, покрытых льдом, глубинные воды заметно холоднее поверхностных. У поверхности термометры показывают в тропиках круглый год 22-26°С; летом в умеренных широтах 15-18°С, в полярных морях 8-10°С; зимой температура у поверхности везде, кроме тропиков, опускается на 8-10°С. А вот в глубинах океана температура всегда почти неизменна, практически не зависит от широты и близка к 1-2°С.

Переход от теплых приповерхностных вод к холодным глубинным происходит отнюдь не равномерно по глубине (Приложение 4). Вблизи поверхности лежит слой, перемешиваемый волнением (перемешанный слой), его толщина меньше 100 м, а температура в нем почти одинакова. Глубже быстро, почти скачком, температура падает на 5-10°С. Еще глубже, температурные градиенты уменьшаются, и хотя по мере дальнейшего погружения температура воды продолжает еще падать, но падает медленно. На некоторой глубине температурные градиенты исчезают, и далее до самого дна температура воды остается практически постоянной.

Таким образом, по мере погружения в глубины океана на величину скорости звука действуют два противоборствующих фактора: понижение температуры ведет к уменьшению скорости звука, а увеличение статического давления - к ее росту. Фактически дело обстоит так, что в верхней части океана доминирует температурный эффект и скорость звука падает; на некоторой глубине температурный градиент становится столь малым, что доминирующая роль переходит к статическому давлению и скорость звука начинает вновь возрастать и растет уже до самого дна. Глубина, на которой скорость звука минимальна, существенно зависит от широты и времени года: в тропиках она составляет 1-1,5 км, а в полярных морях даже летом не превышает 100-150 м.

Страницы: 1, 2, 3



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать