Альтернативные источники энергетики

Альтернативные источники энергетики

Ташполотов Ы., Садыков Э.

(Ошский государственный университет)











Альтернативные источники энергии

Введение


Одной из фундаментальных проблем, состоящих перед человечеством, является энергетическая проблема. В настоящее время основными источниками энергии являются уголь, нефть и газ. Их прогнозные запасы оцениваются, соответственно, в 15 трлн.т , 500 млрд. т и 400 трлн. м3. При современном уровне добычи разведанных запасов угля хватит на 400 лет, нефти на 42 года и газа на 61 год. Мировая энергетическая система стоит перед лицом гигантских проблем. Поэтому, стремительное истощение природных энергоносителей выводит задачу поиска принципиально новых способов получения энергии на первый план и в ближайшей перспективе должна снижаться роли нефти, природного газа и угля.

Сейчас известно, что древесина - это аккумулированная с помощью фотосинтеза солнечная энергия. При сгорании каждого килограмма сухой древесины выделяется около 20000 кДж тепла, теплота сгорания бурого угля равна примерно 13000кДж/кг, антрацита 25000кДж/кг, нефти и нефтепродуктов 42000кДж/кг, а природного газа 45000кДж/кг. Самой высокой теплотой сгорания обладает водород 120000кДж/кг. Известно, что сжигание энергоносителей для получения энергии происходит при довольно высокой температуре и, следовательно, при низких температурах этот процесс протекает чрезвычайно медленно, а скорость химических реакций с понижением температуры на каждые 100С уменьшается в два раза [1]. Сравнительные оценки процессов горения приведены в работе [1] и где показано, что при 200С 1 грамм дерева сгорит в 258 секунд, или около десять миллиардов лет. Это означает, что изобретение огня ускорило этот медленный процесс «горения» в миллиарды раз.

С точки зрения современной физики топливо является поставщиком свободных электронов - генераторов энергии. Тогда можно предположить, что свободные электроны, получаемые от топлива, можно заменить электронами связи любых других элементов, при этом, исключая в процессе горения вышеназванных основных энергоносителей. Так как продукты горения связываются в окислы, но окисление является следствием, а не причиной горения.

Если процессу горения подойти с таких позиций, то на наш взгляд, необходим разработки и создания новой концепции источников энергии и энергетической технологии на основе переосмысления современной физики и химии, процесса горения и роли электрических и других полей в природных, технологических и других энергетических процессах, так как возможность повышения эффективности традиционной энергетики во многом ограничена законами физики и термодинамики. С другой стороны существующие способы получения энергии, как тепловой, электрической так и атомной являются губительными для окружающей среды. Технологии аккумулирования солнечной и другие виды альтернативных видов энергий пока еще не получали широкого применения. Однако, стремительное истощение природных энергоносителей ставят задачу активного поиска принципиально новых источников и способов получения энергии. Здесь прорывным считаются такие научно-технические решения, которые позволяют определить неисчерпаемый источник энергии, способный заменить нефть, уголь и газ, но в отличие от последних, не загрязняющий окружающую среду.

Известно, что современные способы получения энергии основаны на химических или ядерных реакциях. Для сравнения значения удельного энергетического выхода в различных способах получения энергии в таблице 1 приведены принципиальные их значения.


Таблица 1

Удельный энергетический выход в различных способах получения энергии

№, п/п

Способы получения энергии

 Химические реакции

1.

Сжигание углеродосодержащих энергоносителей

 С+О2 0,0046 МэВ + СО2

2.

Распад атомных ядер

U235 0,85 MэВ + ядерные отходы

3.

Термоядерный синтез

Д +Т 4Не2 + 17,6 МэВ


Из таблицы 1 видно, что наименее эффективны способы получения энергии, основанные на сжигании топлива. Атомная энергетика имеет несколько порядков лучшие показатели. Во всех приведенных способах процесс получения энергии сопровождается появлением веществ, небезопасных для биосферы. Исходные химические элементы никуда не деваются, а образуют новые химические или ядерные соединения, которые остаются в виде отходов или попадают в атмосферу. Поэтому задача состоит в том, чтобы найти новые способы получения энергии, свободные от недостатков традиционных технологий.

Наиболее эффективным сейчас считается управляемый термоядерный синтез. К концу ХХ века затраты на исследование в этом направлении составляли 23 млрд. долларов, а результат пока не получен, и предполагают достичь положительному результату не ранее 2050 года.

Согласно работы [2] на Земле есть два основных источника энергии: первый - это вещество, в которой природой аккумулирована энергия связи элементарных частиц, которая высвобождается при расщеплении-распаде вещества на элементарные частицы, второй источник энергии - это электринный газ, эфир, энергия которого пополняется, потоками нейтрино.

Природа в энергетических процессах обходится без использования органического и ядерного топлива. Подпитка энергией процессов образования нового вещества и развития происходит путем энергообмена с окружающей средой. Поэтому ученые разных стран интенсивно исследуют возможные виды альтернативных источников энергии.

Рассмотрим некоторые известные виды разработанных новых энерготехнологий.

1. Вода - новый источник энергии


В настоящее время многие ученые считают водород наиболее перспективным энергоносителем будущей энергетики [3-6]. Основным и очень доступным его источником является вода. При его сжигании водорода образуется опять вода - совершенно безопасное вещество. Поэтому считается, что по экологической безопасности у водорода нет конкурентов. Однако реализация этой задачи сдерживается большими энергозатратами на получение водорода из воды. Если нефть, газ и уголь - это готовые энергоносители, а водород в чистом виде на Земле отсутствует. Для того, чтобы водородная энергетика состоялась, нужно, чтобы полученная энергия при сжигании водорода намного превышала затраченную энергию на его получение.

При помощи электроэнергии воду можно разложить на водород и кислород. Когда вода подвергается действию с частотой, совпадающей с ее своей молекулярной частотой методом применения системы, созданной Стэном Майерсом (США) и вторично созданной не так давно компанией Xogen Power, она (вода) разлагается на кислород и водород при минимальных издержек электроэнергии. Внедрение разных электролитов (добавок, увеличивающих электрическую проводимость воды) резко увеличивает эффективность пpoцecса. Наряду с этим, различные геометрические формы и текстуры поверхности благоприятно влияют на увеличение эффективности процесса разложения воды. Например, в 1957 году исследователем Фридманом (США) был патентован особый железный сплав, внедрение которого приводит к самопроизвольному разложению воды на водород и кислород. Это означает, что с помощью этого железного сплава может быть непрерывное получение водорода из воды. Рассмотрим работы разных авторов, посвященные к получению водорода из воды.

1.1 Холодный ядерный синтез


Теоретические и экспериментальные результаты исследований показывают, что наиболее вероятным источником дешевого водорода, получаемого из воды, может стать её плазменный электролиз. При обычном электролизе, американские ученые Понс и Флешман в 1989 году показали возможность получения дополнительной энергии. По их мнению, источником этой энергии является холодный ядерный синтез[7], зафиксированные ими при плазменном электролизе воды.

В [8] обнаружено излучение до 1000 нейтронов в 1 секунду при массовом захлопывании кавитационных пузырьков и выделении тепловой энергии в 20 раз больше чем затраченной на образование потока воды в трубе. Кавитация как резонанс частоты колебаний молекул жидкости с частотой колебаний пузырьков пара, их образованием и схлопыванием сопровождается разгоном звуковых и ударных волн, высокими параметрами на фронте волны и низкими за фронтом волны. Это приводит к распаду вещества (ФПВР) на элементарные частицы с выделением большого количества тепла. Автор работы [8] предполагает, что во время захлопывании пузырьков существует вероятность захвата протонами электронов и образует атом водорода(при температуре 10000 К). Как известно, атомы водорода существуют в интервале температур 5000-100000С, что вытекает возможность формирования плазмы с такой температурой при определенной плотности атомов водорода в единице объема. В таких условиях молекула воды должна разрушаться, и ядро атома водорода превратиться в нейтрон. Последний, далее присоединяется к другому атому водорода или кислорода другой молекулы воды образуя, дейтерий или тритий или более тяжелый изотоп кислорода. При этом выделяется внутриядерная энергия и осуществиться холодный ядерный синтез.

1.2 Плазменный электролиз воды


В [9] Ф.М.Канаревым установлено, что источником дополнительной энергии при обычном и плазменном электролизе воды является не синтез ядер, а синтез атомов и молекул водорода. В последующих работах он получил результаты, показывающие уменьшение затрат энергии на получение водорода при плазменном электролизе воды. Таким образом, для того чтобы водородная энергетика состоялось, нужно, чтобы полученная энергия при сжигании водорода намного превышала затраченную энергию на его получение. Известно, что в природе существует экономный процесс разложения молекул воды на водород и кислород. Например, при фотосинтезе атомы водорода отделяются от молекул воды, и используется в качестве соединительных звеньев при формировании органических молекул, а кислород уходит в атмосферу. По данным [9], в низкотемпературном электролизере процесс электролиза воды аналогичен тому, который идет при фотосинтезе.

1.3 Процесс индуцированного распада протона на основе плазмо-электрического процесса


Исследование и изучение распада протона, возможно, станет основой получения экологически чистой и дешевой энергии. Вышеприведенные экспериментально установленные данные указывает на то, что возможен процесс индуцированного распада протона. Согласно[10], если протону сообщить дополнительную энергию (107,74 МэВ), то он становится нестабильным и распадается на легкие частицы, имеющие очень малое время жизни, в результате чего происходит полное превращение в энергию. Расчеты показывают, что энергии одного протона достаточно для того, чтобы при распаде инициировать распад еще 8 протонов. При этих условиях возможна цепная реакция индуцированного распада протонов, которая поддерживается и развивается за счет деструктизации вещества. Такую реакцию можно реализовать в водной среде. Индуцированный распад протона, возможно, осуществить в водной среде на основе плазмоэлектрического процесса[4,9]. Согласно [4,9] при повышении напряжения между электродами до 60В в растворе работает ионная проводимость и происходит обычный процесс электролиза воды. При дальнейшем повышении напряжения увеличивается количество протонов, отделившихся от молекулы воды, и у катода формируется плазма. Сформировавшаяся плазма ограничивает контакт раствора с поверхностью катода. На границе «плазма-реактор» атомы водорода соединяются в молекулы. Таким образом, при плазмоэлектрическом процессе источником плазмы является атомарный водород. Синтез атома водорода - процесс соединения свободного протона со свободным электроном. Атомарный водород существует, как известно, при температуре 5000-100000С, то в зоне катода образуется плазма с такой температурой.

Страницы: 1, 2



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать