Аналитическое выражение второго закона термодинамики. Энтропия
МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА РФ
Федеральное государственное образовательное учреждение
высшего профессионального образования
«Пермская государственная сельскохозяйственная академия имени академика Д.Н. Прянишникова»
Кафедра «Трактора и автомобили»
КОНТРОЛЬНАЯ РАБОТА
по дисциплине «Теплотехника»
Вариант № 2
Выполнил студент второго курса
Факультета заочного обучения
специальности «Технология обслуживания
и ремонта машин в АПК»
шифр ТУ – 04 – 72
гр. Анисимович И.И.
Домашний адрес: г. Пермь,
Ул. Семченко 6-223
Проверил: профессор Манташов А.Т.
____________________
«____» _________2005г.
Пермь
Задание № 1
Вопрос № 2 Что понимают под нормальными физическими и нормальными техническими условиями состояния системы?
Под этими состояниями понимают такое состояние системы, при котором значение температуры и давления равны, соответственно, для нормального физического (НФУ) и для нормального технического условия (НТУ) состояния системы. Эти значения применяют для задания состояния термодинамической системы при расчетах.
Вопрос № 7 Приведете аналитическое выражение второго закона термодинамики.
Второй закон термодинамики можно сформулировать следующим образом: невозможен процесс, при котором теплота переходила бы самопроизвольно от тел более холодных к телам более теплым (постулат Клаузиуса, 1850 г.).
Второй закон термодинамики определяет также условия, при которых теплота может, как угодно долго преобразовываться в работу. В любом разомкнутом термодинамическом процессе при увеличении объема совершается положительная работа:
,
где l – конечная работа,
v1 и v2 – соответственно начальный и конечный удельный объем;
но процесс расширения не может продолжаться бесконечно, следовательно, возможность преобразования теплоты в работу ограничена.
Непрерывное преобразование теплоты в работу осуществляется только в круговом процессе или цикле.
Каждый элементарный процесс, входящий в цикл, осуществляется при подводе или отводе теплоты dQ, сопровождается совершением или затратой работы, увеличением или уменьшением внутренней энергии, но всегда при выполнении условия dQ=dU+dL и dq=du+dl, которое показывает, что без подвода теплоты (dq=0) внешняя работа может совершаться только за счет внутренней энергии системы, и, подвод теплоты к термодинамической системе определяется термодинамическим процессом. Интегрирование по замкнутому контуру дает:
, , так как .
Здесь QЦ и LЦ - соответственно теплота, превращенная в цикле в работу, и работа, совершенная рабочим телом, представляющая собой разность |L1| - |L2| положительных и отрицательных работ элементарных процессов цикла.
Элементарное количество теплоты можно рассматривать как подводимое (dQ>0) и отводимое (dQ<0) от рабочего тела. Сумма подведенной теплоты в цикле |Q1|, а сумма отведенной теплоты |Q2|. Следовательно,
LЦ=QЦ=|Q1| - |Q2|.
Подвод количества теплоты Q1 к рабочему телу возможен при наличии внешнего источника с температурой выше температуры рабочего тела. Такой источник теплоты называется горячим. Отвод количества теплоты Q2 от рабочего тела также возможен при наличии внешнего источника теплоты, но с температурой более низкой, чем температура рабочего тела. Такой источник теплоты называется холодным. Таким образом, для совершения цикла необходимо иметь два источника теплоты: один с высокой температурой, другой с низкой. При этом не все затраченное количество теплоты Q1 может быть превращено в работу, так как количество теплоты Q2 передается холодному источнику.
Условия работы теплового двигателя сводятся к следующим:
- необходимость двух источников теплоты (горячего и холодного);
- циклическая работа двигателя;
- передача части количества теплоты, полученной от горячего источника, холодному без превращения ее в работу.
В связи с этим второму закону термодинамики можно дать еще несколько формулировок:
- передача теплоты от холодного источника к горячему невозможна без затраты работы;
- невозможно построить периодически действующую машину, совершающую работу и соответственно охлаждающую тепловой резервуар;
- природа стремится к переходу от менее вероятных состояний к более вероятным.
Следует подчеркнуть, что второй закон термодинамики (так же как и первый), сформулирован на основе опыта.
В наиболее общем виде второй закон термодинамики может быть сформулирован следующим образом: любой реальный самопроизвольный процесс является необратимым. Все прочие формулировки второго закона являются частными случаями наиболее общей формулировки.
Что понимается под энтропией?
Несоответствие между превращением теплоты в работу и работы в теплоту приводит к односторонней направленности реальных процессов в природе, что и отражает физический смысл второго начала термодинамики в законе о существовании и возрастании в реальных процессах некой функции, названной энтропией, определяющей меру обесценения энергии.
Часто второе начало термодинамики преподносится как объединенный принцип существования и возрастания энтропии.
Принцип существования энтропии формулируется как математическое выражение энтропии термодинамических систем в условиях обратимого течения процессов:
.
Принцип возрастания энтропии сводится к утверждению, что энтропия изолированных систем неизменно возрастает при всяком изменении их состояния и остается постоянной лишь при обратимом течении процессов:
.
Оба вывода о существовании и возрастании энтропии получаются на основе какого-либо постулата, отражающего необратимость реальных процессов в природе. Наиболее часто в доказательстве объединенного принципа существования и возрастания энтропии используют постулаты Р.Клаузиуса, В.Томпсона-Кельвина, М. Планка.
В действительности принципы существования и возрастания энтропии ничего общего не имеют. Физическое содержание: принцип существования энтропии характеризует термодинамические свойства систем, а принцип возрастания энтропии – наиболее вероятное течение реальных процессов. Математическое выражение принципа существования энтропии – равенство, а принципа возрастания – неравенство. Области применения: принцип существования энтропии и вытекающие из него следствия используют для изучения физических свойств веществ, а принцип возрастания энтропии – для суждения о наиболее вероятном течении физических явлений. Философское значение этих принципов также различно.
В связи с этим принципы существования и возрастания энтропии рассматриваются раздельно и математические выражения их для любых тел получаются на базе различных постулатов.
Вывод о существовании абсолютной температуры T и энтропии s как термодинамических функций состояния любых тел и систем составляет основное содержание второго закона термодинамики и распространяется на любые процессы – обратимые и необратимые.
Вопрос № 12 Каким образом задают газовую смесь?
Состав газовой смеси может быть задан парциальными давлениями, массовыми или объёмными долями. Это необходимо для определения состава газовой смеси.
Задание смеси парциальными давлениями.
- это равенство называется законом Дальтона
Задание смеси объёмными долями
Объёмной долей называется отношение приведённого объёма данного газа к объёму всей смеси, обозначается ri она равна: , где Vi – приведённый объём. Сумма приведённых объёмах равна объёму смеси:
Задание смеси массовыми долями.
Массовую долю выражают через объёмную:
или , где - кажущаяся молярная масса смеси.
Вопрос № 17 в чём смысл выражения уравнения Майера?
Уравнение гласит: «Для любого газа разность между теплоемкостями при р = cоnst численно равна величине газовой постоянной этого газа». Оно имеет вид: , где СР – теплоёмкость при постоянном давлении, СV - теплоёмкость при постоянном объёме. Уравнение является одним из наиболее существенных в термодинамике.
Задание № 2
Вопрос № 1 Дать определение термодинамического процесса. Изобразить процесс в pv и Ts координатах.
Термодинамический процесс – это определённая последовательность изменения состояния рабочего тела системы при её взаимодействии с окружающей средой.
Процесс бывает обратимым и необратимым, а также равновесным, т.е. протекающий с бесконечно малым отклонением состояния системы от равновесного.
процесс в pv координатах
Процесс в Тs координатах
Вопрос № 6 Как вычисляется работа техническая в политропном процессе?
Техническая работа вычисляется по формуле (2.60)[1]: , где R – газовая постоянная, T – температура, Р1 и Р2 – давление до и после работы, n – показатель политропы.
Вопрос № 11 Изотермический процесс и его особенности.
Изотермическим называется процесс, протекающий при постоянной температуре.
К его особенностям относится:
изменение внутренней энергии и энтальпии равны нулю;
Страницы: 1, 2