В то же время, применение BMS и ресурсосберегающего оборудования позволяет:
- вписаться в ограниченные энергомощности и исключить расходы на строительство дополнительной подстанции и прокладку силовых кабелей, особенно в центральных частях города, где муниципальные власти ограничивают владельцев зданий в объемах энергопотребления;
- сократить расходы на дорогостоящие ремонт и замену вышедшего из строя оборудования, продлить срок его службы за счет постоянного мониторинга параметров инженерных систем и своевременного проведения наладочных работ при выявлении отклонений параметров систем от нормы;
- снизить на 20% ежемесячные коммунальные платежи (вода, тепло, канализация, электроснабжение) за счет работы систем в наиболее экономном режиме и автоматического перевода инженерии здания из дневного в ночной режим работы (когда автоматически отключается освещение, кондиционеры, снижается температура отопительных батарей в комнатах, персонал которых покинул здание);
- сократить в 3 раза расходы на службу эксплуатации, поскольку большинство систем будет работать в автоматическом режиме, что снижает расходы на ремонт или замену дорогостоящего оборудования, вышедшего из строя по причине халатности персонала или ошибок оператора;
- исключить расходы на интеллектуальную надстройку систем здания при расширении числа инженерных систем и их модернизации за счет использования возможностей открытой архитектуры системы управления здания;
- снизить заболеваемость сотрудников за счет создания комфортных условий для их работы и, как следствие, сократить расходы на реабилитацию сотрудников и страховые выплаты.
Помимо значительного снижения численности персонала, обслуживающего инженерные системы здания, за счет максимальной автоматизации процессов управления и контроля работы систем жизнеобеспечения, владелец интеллектуального здания может рассчитывать на получение следующих выгод:
- увеличится в 2 раза срок бесперебойной работы инженерных систем за счет автоматического поддержания оптимальных условий работы оборудования;
- при возникновении аварийных ситуаций операторы, осуществляющие контроль работы оборудования, будут иметь полную информацию о работе каждой системы и рекомендации BMS по выбору оптимального и наиболее безопасного выхода из ситуации. При этом большая часть задач будет решать автоматика здания;
- при появлении сбоев в работе оборудования BMS будет своевременно информировать службы эксплуатации, отвечающие за работу данного оборудования, а также главную службу эксплуатации и смежные подразделения. Иными словами, если оператор системы электроснабжения уснул на рабочем месте и BMS не видит его реакции на тревожные сообщения, то она отправляет тревогу главному диспетчеру;
- расходы на техническое обслуживание оборудования и инженерных систем будут минимальными; поскольку мониторинг параметров всех систем осуществляется круглосуточно и при своевременном вызове сервисных бригад, случаи серьезного ремонта оборудования будут исключены;
- все действия автоматики и операторов систем протоколируются BMS, поэтому вероятность возникновения ситуаций коллективной безответственности за остановку или сбой в работе оборудования близка к нулю.
1.2 Анализ технологических схем тепловых пунктов гражданских зданий
Тепловой пункт (ТП) — это комплекс устройств, расположенный в обособленном помещении, состоящий из элементов тепловых энергоустановок, обеспечивающих присоединение этих установок к тепловой сети, их работоспособность, управление режимами теплопотребления, трансформацию, регулирование параметров теплоносителя и распределение теплоносителя по типам потребления.
Основными задачами тепловых пунктов являются:
- преобразование вида теплоносителя;
- контроль и регулирование параметров теплоносителя;
- распределение теплоносителя по системам теплопотребления;
- отключение систем теплопотребления;
- защита систем теплопотребления от аварийного повышения параметров теплоносителя;
- учет расходов теплоносителя и тепла.
Тепловые пункты различаются по количеству и типу подключенных к ним систем теплопотребления, индивидуальные особенности которых, определяют тепловую схему и характеристики оборудования тепловых пунктов, а также по типу монтажа и особенностям размещения оборудования в помещении тепловых пунктов, различают следующие виды тепловых пунктов:
- индивидуальный тепловой пункт (ИТП);
- центральный тепловой пункт (ЦТП);
- блочный тепловой пункт (БТП) [4].
Индивидуальный тепловой пункт используется для обслуживания одного потребителя (здания или его части). Как правило, располагается в подвальном или техническом помещении здания, однако, в силу особенностей обслуживаемого здания, может быть размещён в отдельном сооружении.
Индивидуальный тепловой пункт имеет следующие виды тепловых нагрузок:
- система горячего водоснабжения (ГВС) предназначена для снабжения потребителей горячей водой. Различают закрытые и открытые системы горячего водоснабжения. Часто тепло из системы ГВС используется потребителями для частичного отопления помещений, например, ванных комнат, в многоквартирных жилых домах;
- система отопления предназначена для обогрева помещений с целью поддержания в них заданной температуры воздуха. Различают зависимые и независимые схемы присоединения систем отопления.
При зависимых схемах присоединения давление в абонентской установке зависит от давления в тепловой сети. При независимых схемах присоединения давление в местной системе не зависит от давления в тепловой сети.
Оборудование теплового пункта при зависимой схеме присоединения проще и дешевле, чем при независимой, при этом может быть получен несколько больший перепад температур сетевой воды в абонентской установке. Увеличение перепада температуры воды уменьшает расход теплоносителя в сети, что может привести к снижению диаметров сети и экономии на начальной стоимости тепловой сети и на эксплуатационных расходах.
В зависимости от характера тепловых нагрузок абонента и режима работы тепловой сети выбираются схемы присоединения абонентских установок к тепловой сети. На рисунке 1.1 показаны различные схемы присоединения абонентов к водяной тепловой сети. Схемы а—е показывают совместное присоединение в одном узле отопительной установки и установки горячего водоснабжения при закрытой системе.
Для обозначения различных схем присоединения отопительных установок и установок горячего водоснабжения к тепловой сети принята следующая индексация: отопительные установки О; зависимая со струйным смешением (ЗСС); зависимая с насосным смешением (ЗНС); независимая (Н). Например, О(ЗНС) обозначает отопительную установку, присоединенную по зависимой схеме с насосным смешением; установки горячего водоснабжения Г: параллельная (П); предвключенная (ПР); двухступенчатая смешанная (ДС); двухступенчатая последовательная (ДП).
Например, Г(ДП) обозначает присоединение установок горячего водоснабжения по двухступенчатой последовательной схеме [2].
На рисунке 1.1, а показано параллельное присоединение на одном абонентском вводе горячего водоснабжения и отопительной установки. При такой схеме расход сетевой воды на абонентском вводе определяется арифметической суммой расходов воды на отопление и горячее водоснабжение.
Расход сетевой воды на отопление поддерживается постоянно на расчетном уровне регулятором расхода 12. Расход сетевой воды на горячее водоснабжение является резкопеременной величиной. Регулятор температуры 13 изменяет этот расход в соответствии с нагрузкой горячего водоснабжения.
Расчетный расход сетевой воды на горячее водоснабжение определяется по максимальному значению этой нагрузки и при минимальной температуре воды в подающем трубопроводе тепловой сети. Поэтому суммарный расход сетевой воды получается завышенным, что удорожает систему теплоснабжения. Расчетный расход сетевой воды на горячее водоснабжение можно уменьшить при включении в схему аккумулятора горячей воды для выравнивания графика нагрузки горячего водоснабжения. Однако установка аккумулятора горячей воды усложняет оборудование теплового пункта и увеличивает требующиеся габариты помещения пункта. Поэтому обычно аккумуляторы горячей воды в жилых домах не устанавливаются, хотя это усложняет режимы работы сети.
При параллельном присоединении систем отопления и горячего водоснабжения сетевая вода используется на абонентском вводе недостаточно рационально. Обратная сетевая вода, возвращаемая из отопительной установки с температурой примерно 40 - 70 °С, не используется для подогрева холодной водопроводной воды, имеющей на вводе температуру около 5 °С, хотя теплотой обратной воды после отопления можно покрыть значительную долю нагрузки горячего водоснабжения, поскольку температура горячей воды, подаваемой в систему горячего водоснабжения, обычно не превышает 60— 65 °С. При рассматриваемой схеме вся тепловая нагрузка горячего водоснабжения удовлетворяется за счет теплоты сетевой воды, поступающей в водо-водяной подогреватель 6 непосредственно из подающей линии тепловой сети.
Вследствие нерационального использования теплоносителя на абонентском вводе и удовлетворения нагрузки горячего водоснабжения по максимуму суточного графика получается завышенный расчетный расход воды в городских тепловых сетях. Это вызывает увеличение диаметров тепловых сетей и рост начальных затрат на их сооружение, а также увеличение расхода электрической энергии на перекачку теплоносителя.
Расчетный расход воды несколько снижается при двухступенчатой смешанной схеме присоединения установки горячего водоснабжения и отопительной установки, предложенной П.М. Клушиным (рисунок 1.1, б).
Особенностью этой схемы является двухступенчатый подогрев воды для горячего водоснабжения. В нижней ступени подогрева 7 холодная вода предварительно подогревается за счет теплоты воды, возвращаемой из абонентской установки, благодаря чему уменьшается тепловая производительность подогревателя верхней ступени 8 и снижается расход сетевой воды на покрытие нагрузки горячего водоснабжения.
В рассматриваемой схеме подогреватель нижней ступени 7 включен по сетевой воде последовательно, а подогреватель верхней ступени 8 — параллельно по отношению к отопительной системе.
Преимущество двухступенчатой смешанной схемы по сравнению с параллельной — меньший расчетный расход сетевой воды благодаря частичному удовлетворению нагрузки горячего водоснабжения за счет теплоты воды, возвращаемой из системы отопления.
Одним из методов выравнивания тепловой нагрузки жилых зданий без установки аккумуляторов горячей воды служит применение так называемого связанного регулирования (рисунок 1.1, в и г). В этом случае с помощью регулятора расхода 12, установленного на тепловом пункте, поддерживается постоянный расход сетевой воды на удовлетворение суммарной тепловой нагрузки отопления и горячего водоснабжения. На рисунке 1.1, в осуществлено двухступенчатое последовательное присоединение установок горячего водоснабжения и отопления.
Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10