Дифференциальные уравнения движения точки. Решение задач динамики точки
p> Второй тип систем единиц.

В этих системах за основные принимаются единицы длины, времени и силы, а масса измеряется производной единицей.

К таким системам относится имевшая большое распространение в технике система МКГСС, в которой основными единицами являются метр (м), килограмм силы (кГ) и секунда (с). Единицей измерения массы в этой системе будет 1 кГс2 /м, т. е. масса, которой сила в 1 кГ сообщает ускорение 1 м/с2.

Соотношение между единицами силы в системах СИ и МКГСС таково: 1 кГ=9,81 Н или 1 Н=0,102 кГ.

В заключение необходимо отметить, что надо различать понятия размерность величины и единица ее измерения. Размерность определяется только видом уравнения, выражающего значение данной величины, а единица измерения зависит еще от выбора основных единиц. Например, если, как это принято, обозначать размерность длины, времени и массы соответственно символами L, Т и М, то размерность скорости L/Т, а единицей измерения может быть 1 м/с, 1 км/ч и т. д.

ОСНОВНЫЕ ВИДЫ СИЛ

Рассмотрим следующие постоянные или переменные силы (законы изменения переменных сил, как правило, устанавливаются опытным путем).

Сила тяжести. Это постоянная сила [pic], действующая на любое тело, находящееся вблизи земной поверхности. Модуль силы тяжести равен весу тела.

Опытом установлено, что под действием силы [pic] любое тело при свободном падении на Землю (с небольшой высоты и в безвоздушном пространстве) имеет одно и то же ускорение [pic], называемое ускорением свободного падения, а иногда ускорением силы тяжести (Закон свободного падения тел был открыт Галилеем. Значение q в разных местах земной поверхности различно; оно зависит от географической широты места над уровнем моря. На широте Москвы (на уровне моря) q=9,8156м/с2

Тогда из уравнения (1') следует, что

Р=тq или т=Р/q . (3)

Эти равенства позволяют, зная массу тела, определить его вес (модуль действующей на него силы тяжести) или, зная вес тела, определить его массу.
Вес тела или сила тяжести, как и величина q, изменяются с изменением широты и высоты над уровнем моря; масса же является для данного тела величиной неизменной.

Сила трения. Так будем кратко называть силу трения скольжения, действующую (при отсутствии жидкой смазки) на движущееся тело. Ее модуль определяется равенством

F=f*N (4) где f — коэффициент трения, который будем считать постоянным;
N — нормальная реакция.

Сила тяготения. Это сила, с которой два материальных тела притягиваются друг к другу по закону всемирного тяготения, открытому Ньютоном. Сила тяготения зависит от расстояния и для двух материальных точек с массами
[pic]и [pic], находящихся на расстоянии r друг от друга, выражается равенством

[pic] где f—гравитационная постоянная (в СИ/=6,673*[pic]).

Сила упругости. Эта сила тоже зависит от расстояния. Ее значение можно определить исходя из закона Гука, согласно которому напряжение (сила, отнесенная к единице площади) пропорционально деформации. В частности, для силы упругости пружины получается значение

F=c( (6) где ( — удлинение (или сжатие) пружины; с — так называемый коэффициент жесткости пружины (в СИ измеряется в Н/м).

Сила вязкого трения. Такая сила, зависящая от скорости, действует на тело при его медленном движении в очень вязкой среде (или при наличии жидкой смазки) и может быть выражена равенством

R=(v (7)

где v — скорость тела; (, — коэффициент сопротивления. Зависимость вида
(7) можно получить исходя из закона вязкого трения, открытого Ньютоном.

Сила аэродинамического (гидродинамического) сопротивления. Эта сила тоже зависит от скорости и действует на тело, движущееся в такой, например, среде, как воздух или вода. Обычно ее величину выражают равенством

[pic] (8) где р — плотность среды; S — площадь проекции тела на плоскость, перпендикулярную направлению движения (площадь миделя);

Сx:—безразмерный коэффициент сопротивления, определяемый обычно экспериментально и зависящий от формы тела и от того, как оно ориентировано при движении.

Инертная и гравитационная массы.

Для экспериментального определения массы данного тела можно исходить из закона (1), куда масса входит как мера инертности и называется поэтому инертной массой. Но можно исходить и из закона (5), куда масса входит как мера гравитационных свойств тела и называется соответственно гравитационной
(или тяжелой) массой. В принципе ни откуда не следует, что инертная и гравитационная массы представляют собой одну и ту же величину. Однако целым рядом экспериментов установлено, что значения обеих масс совпадают с очень высокой степенью точности (по опытам, проделанным советскими физиками (1971 г.),— с точностью до [pic]). Этот экспериментально установленный факт называют принципом эквивалентности. Эйнштейн положил его в основу своей общей теории относительности (теории тяготения).

Исходя из изложенного, в механике пользуются единым термином «масса», определяя массу как меру инертности тела и его гравитационных свойств.

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ДВИЖЕНИЯ ТОЧКИ. РЕШЕНИЕ ЗАДАЧ ДИНАМИКИ ТОЧКИ

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ДВИЖЕНИЯ МАТЕРИАЛЬНОЙ ТОЧКИ

Для решения задач динамики точки будем пользоваться одной из следующих двух систем уравнений.

Уравнения в декартовых координатах.

Из кинематики известно, что движение точки в прямоугольных декартовых координатах задается уравнениями:

[pic] [pic] [pic] (9)

Задачи динамики точки состоят в том, чтобы, зная движение точки, т. е. уравнения (9), определить действующую на точку силу или, наоборот, зная действующие на точку силы, определить закон ее движения, т.е. уравнения
(9). Следовательно, для решения задач динамики точки надо иметь уравнения, связывающие координаты х, у,zг этой точки и действующую на нее силу (или силы). Эти уравнения и дает второй закон динамики.

Рассмотрим материальную точку, движущуюся под действием сил [pic]., по отношению к инерциальной системе отсчета Охуг. Проектируя обе части равенства (2), т.е. равенства [pic] оси х, у, zг и учитывая, что [pic] и т.д., получим

[pic] [pic] [pic] (10)

или, обозначая вторые производные по времени двумя точками,

[pic] [pic] [pic] (10')
Это и будут искомые уравнения, т.е. дифференциальные уравнения движения точки в прямоугольных декартовых координатах. Так как действующие силы могут зависеть от времени t, от положения точки, т. е. от ее координат х, у,z, и от скорости, т. е. от [pic], [pic] [pic], то в общем случае правая часть каждого из уравнений (10) может быть функцией всех этих переменных, т. е. t, х, у, z, [pic]одновременно.
Уравнения в проекциях на оси естественного трехгранника. Для получения этих уравнений спроектируем обе части равенства [pic] на оси M(nb, т.е. на касательную М(: к траектории точки, главную нормаль Мп, направленную в сторону вогнутости траектории, и бинормаль Mb

. Тогда, учитывая, что [pic], [pic], [pic] получим

[pic] [pic] [pic] (11)

Уравнения (11), где v=ds!dt, представляют собой дифференциальные уравнения движения точки в проекциях на оси естественного трехгранника.

РЕШЕНИЕ ПЕРВОЙ ЗАДАЧИ ДИНАМИКИ

(ОПРЕДЕЛЕНИЕ СИЛ ПО ЗАДАННОМУ ДВИЖЕНИЮ)

Если ускорение движущейся точки задано, то действующая сила или реакция связи сразу находится по уравнениям (1) или (2). При этом для вычисления реакции надо дополнительно знать активные силы. Когда ускорение непосредственно не задано, но известен закон движения точки, то для определения силы можно воспользоваться уравнениями (10) или (11).

РЕШЕНИЕ ОСНОВНОЙ ЗАДАЧИ ДИНАМИКИ ПРИ ПРЯМОЛИНЕЙНОМ ДВИЖЕНИИ ТОЧКИ

Движение материальной точки будет прямолинейным, когда действующая на нее сила (или равнодействующая приложенных сил) имеет постоянное направление, а скорость точки в начальный момент времени равна нулю или направлена вдоль силы.

Если при прямолинейном движении направить вдоль траектории координатную ось Ох, то движение точки будет определяться первым из уравнений (10), т. е. уравнением

[pic] или [pic] (12)
Уравнение (12) называют дифференциальным уравнением прямолинейного движения точки. Иногда его удобнее заменить двумя уравнениями, содержащими первые производные:

[pic] [pic] (13)
В случаях, когда при решении задачи надо искать зависимость скорости от координаты х, а не от времени t (или когда сами силы зависят от х), уравнение (13) преобразуют к переменному х. Так как dVx/dt=dVx/dx*dx/dt=dVx/dx*Vx, то вместо (13) получим

[pic] [pic] (14)

Решение основной задачи динамики сводится к тому, чтобы из данных уравнений, зная силы, найти закон движения точки, т. е. x=f(t). Для этого надо проинтегрировать соответствующее дифференциальное уравнение. Чтобы яснее было, к чему сводится эта математическая задача, напомним, что входящие в правую часть уравнения (12) силы могут зависеть от времени t, от положения точки, т. е. от х, и от ее скорости, т. е. от Vy=x.
Следовательно, в общем случае уравнение (12) с математической точки зрения представляет собой дифференциальное уравнение 2-го порядка, имеющее вид
[pic].

Если для данной конкретной задачи дифференциальное уравнение (12) будет проинтегрировано, то в полученное решение войдут две постоянные интегрирования [pic] и [pic] и общее решение уравнения (12) будет иметь вид

[pic] (15)

Чтобы довести решение каждой конкретной задачи до конца, надо определить значения постоянных [pic]. Для этого используются обычно так называемые начальные условия.

Изучение всякого движения будем начинать с некоторого определенного момента времени, называемого начальным моментом. От этого момента будем отсчитывать время движения, считая, что в начальный момент t=0. Обычно за начальный принимают момент начала движения под действием заданных сил.
Положение, которое точка занимает в начальный момент, называется начальным положением, а ее скорость в этот момент — начальной скоростью (начальную скорость точка может иметь или потому, что до момента t=0 она двигалась по инерции, или в результате действия на нее до момента t=0 каких-то других сил). Чтобы решить основную задачу динамики, надо кроме действующих сил знать еще начальные условия, т. е. положение и скорость точки в начальный момент времени.

В случае прямолинейного движения начальные условия задаются в виде

При t=0 [pic],. [pic] (16)

По начальным условиям можно определить конкретные значения постоянных
[pic] и найти частное решение уравнения (12), дающее закон движения точки, в виде

[pic] (17)

-----------------------
[pic]

z

x

y

M

(

U

b

n

[pic]

[pic]

[pic]

Аристотель (384-322 до н.э.)


Эйнштейн (1879-1955)


Ньютон (1643-1727)


Галилей (1564-1642)


S

0


Страницы: 1, 2



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать