Диффузионный СО2 лазер с ВЧЕ-разрядом

3.     Получение инверсной заселённости, состав активной среды,  температурный режим, регенератор

В лазере на основе СО2 используется четырёхуровневая система получения инверсной населённости между колебательными уровнями молекул. Молекула СО2 состоит из атома углерода и двух симметрично расположенных атомов кислорода, т.е. имеет линейную структуру О-С-О. Как видно из схемы на рис. 7 атомы кислорода могут совершать симметричные (мода n1ОО) и несимметричные (асимметричные)  (мода n3ОО), а также  поперечные этому направлению так называемые деформационные колебания (мода n2LOO) - из-за наличия двух взаимно перпендикулярных направлений этот тип колебаний является дважды вырожденным. Употребляемые для описания состояния колебательно-возбуждённой молекулы квантовые числа n1, n2L и n3 характеризуют число квантов,  соответствующих колебанию данного типа, L указывает поляризацию деформированного колебания. Лазерный квант излучается при переходе из состояния 001 в 100 (цифры обозначают колебательные квантовые числа в модах n1, n2L и n3 соответственно). Возможен также переход 001®020 с длиной волны l=9.4 мкм, но он обычно гораздо слабее.  Для получения оптимальных условий в рабочую смесь СО2-лазера помимо углекислого газа добавляют азот и гелий.


Время жизни верхнего лазерного уровня СО2 относительно спонтанных переходов составляет ~0.2 с (А21»5.1 с-1).  Поэтому более интенсивно верхние и нижние лазерные уровни расселяются (релаксируют)  в результате безизлучательных переходов при столкновениях возбуждённой молекулы с невозбуждёнными компонентами лазерной среды по схеме на рис. 3. Однако высокая эффективность получения инверсной заселённости в газоразрядных СО2-лазерах обусловлена рядом причин. В электрическом разряде с высокой эффективностью образуются колебательно-возбуждённые молекулы N2, составляющие до 50% их общего числа. Поскольку молекула N2 состоит из двух одинаковых ядер, её дипольное излучение запрещено и она может дезактивироваться только при столкновении со стенкой или с другими молекулами. При наличии СО2 колебательная энергия N2 может быть легко передана молекулам СО2 поскольку существует близкий резонанс между колебаниями N2 и модой n3 колебаний СО2. Уровень 001 только на 18 см-1 лежит выше первого колебательного уровня азота и необходимый недостаток энергии молекулы СО2 могут получать от кинетической энергии азота. В результате энергия, затрачиваемая на возбуждение верхнего лазерного уровня и характеризуемая КПД разряда hк, для смесей СО2-N2-He может превышать 80%. При наличии азота в смеси время релаксации, запасённой верхним уровнем энергии tэ увеличивается и становится равным . При средней плотности выделяемой в положительном столбе разряда мощности <jE>  заселённость верхнего лазерного уровня в отсутствии генерации будет . Создание инверсии требует малой населённости нижнего лазерного уровня. В условиях отсутствия генерации нижние уровни СО2 находятся в тепловом равновесии с основным, их относительная заселённость ~. Для поддержания стационарной генерации нижние уровни СО2 необходимо расселять. Этот процесс обеспечивается добавлением в лазерную смесь расселяющих компонент, из которых наиболее эффективен гелий. Также помимо эффективного расселения уровня 100 гелий обеспечивает хороший теплоотвод от рабочей среды за счёт теплопроводности и оказывает стабилизирующее действие на заряд, поэтому в подавляющем большинстве существующих технологических лазеров предпочтение отдаётся ему. Таким образом, эффективная работа СО2-ляазера требует трёхкомпонентной лазерной смеси. Определение состава рабочей среды лазера является сложной оптимизационной задачей, решение которой необходимо проводить в каждом конкретном случае. Для диффузионного СО2-лазера часто используется смесь СО2:N2:He  в  соотношении 1:1:3.

            Частотный спектр генерации СО2-лазера имеет достаточно сложный вид. Причиной этого является наличие тонкой структуры колебательных уровней, обусловленной существованием ещё одной степени свободы молекулы СО2 – вращения. Из-за вращения молекулы каждый изображённый на рис. 7 колебательный уровень распадается на большое количество вращательных подуровней, характеризуемых квантовым числом j и отстоящих друг от друга на величину энергии Deвр, e001, e100, kTr. В результате интенсивного обмена энергий между вращательной и поступательной степенями свободы устанавливается больцмановское распределение частиц по вращательным состояниям, описываемое уравнением , где Nn , Nn,j – концентрации возбужденных частиц на колебательном уровне n и на его вращательных подуровнях j; = 0,38 см-1 – вращательная константа. Согласно правилам отбора в молекуле СО2 переходы между двумя различными колебательными уровнями возможны при изменении вращательного квантового числа на 1 т.е. Dj=±1. Таким образом, линия усиления рабочей среды состоит из большого числа линий, каждая из которых уширена за счёт эффекта Доплера на величину  и за счёт столкновений на величину  и для СО2-лазера вычисляются :  

, где рi – парциальные давления компонент смеси.

            Коэффициент усиления активной среды СО2-лазера существенно зависит от температуры рабочей смеси Тг. Процессы накачки лазерной смеси и генерации неизменно сопровождается нагревом газа. Температура лазерной смеси Тг в установившемся состоянии пропорциональна мощности энерговыделения в разряде, т.е. Тг~jE. В отсутствие генерации заселенность верхнего лазерного уровня также пропорциональна jE. Поэтому если время столкновительной релаксации  не зависит от температуры газа и N001~Тг, учёт возрастания  с ростом Тг лишь ослабит зависимость N001(Тг) (пунктирная линия). Заселённость нижнего лазерного уровня находится в равновесии с основным и описывается законом Больцмана N100~. В связи с этим при достижении некоторой критической температуры Тmax инверсная заселённость лазерной смеси исчезает. Максимальная
инверсия достигается при оптимальных температурах смеси Торt. Для смеси с cг»1,5*10-1 Вт/(м*К), Тстенки»300К зависимость населённости лазерных уровней от температуры показана на рис. 8. Типичные значения Тopt~400...500К, Тмах~700...800К.

            Под действием электронных ударов и в результате столкновений возбуждённых молекул в тлеющем разряде в СО2-лазерах происходит частичная диссоциация углекислого газа СО2 ® СО + О. Отношение концентраций СО к СО2 может достигать ~12%, содержание О2 – 0,8%. Из-за этого при сохраняющемся энерговкладе возрастают потери на диссоциацию, возбуждение электронных состояний и возбуждение колебаний СО и О2. Поэтому населённость верхнего рабочего уровня СО2 падает и коэффициент усиления уменьшается. Поскольку ресурс работы СО2-лазера, определенный требованиями экономичности установки, оценивается несколькими сотнями часов, а существенный рост доли СО и О2 определяется минутами, необходимо включение в контур регенератора, в котором частично восстанавливается рабочая смесь. В диффузионном СО2-лазере целесообразно применение цеолита (SiO4+AlO4) в количестве 20мг, насыщенного парами H2O.

4.      Резонатор

            Резонатор является оптической системой, позволяющей сформировать стоячую электромагнитную волну и получить высокую интенсивность излучения, необходимую для эффективного протекания процессов вынужденного излучения возбуждённых частиц рабочего тела лазера, а следовательно, когерентного усиления генерируемой волны. Оптические резонаторы в квантовой электронике не только увеличивают время жизни кванта в системе и вероятность вынужденных переходов, но и так же, как резонансные контуры и волноводы определяют спектральные характеристики излучения.

            В длинноволновом диапазоне классической электроники длина волны излучения существенно больше размеров контура и его спектральные характеристики определяются сосредоточенными параметрами электрической цепи. Длинные радиоволны при этом излучаются в пространство практически изотропно. При сокращении длины волны и переход в СВЧ-диапазону для формирования электромагнитной волны используются пустотелые объёмные резонаторы с размерами, сравнимыми с длиной волны. При этом появляется возможность формирования направленных (анизотропных) распределений излучения в пространстве с помощью внешних антенн. В ИК и видимом диапазоне длина волны излучения много меньше размеров резонатора. В этом случае оптический резонатор определяет не только частоту, но и пространственные характеристики излучения.

            Простейшим типом резонатора является резонатор Фабри-Перо, состоящий из двух параллельных зеркал, расположенных друг от друга на расстоянии Lp. В технологических лазерах резонатор Фабри-Перо используется крайне редко из-за больших дифракционных потерь. Чаще используются резонаторы с одной или двумя сферическими отражающими поверхностями. Свойства этих резонаторов зависят от знака и величины радиуса их кривизны R, а также от Lp и определяются стабильностью существования в нём электромагнитной волны.

            В так называемом устойчивом (стабильном) резонаторе распределение поля воспроизводится идентично при многократных проходах излучения между зеркалами и имеет стационарный характер. В результате попеременного отражения электромагнитных волн от зеркал волна формируется таким образом, что в приближении геометрической оптики не выходит за пределы зеркал в поперечном направлении и выводится из устойчивого резонатора только благодаря частичному пропусканию самих отражающих элементов. В случае отсутствия потерь, излучение могло бы существовать в устойчивом резонаторе бесконечно долго. В неустойчивом (нестабильном) резонаторе световые пучки (или описывающие их электромагнитные волны) в результате последовательных отражений от зеркал перемещаются в поперечном оси резонатора направлении к периферии и покидают его.

            Свойства резонаторов и характеристики создаваемых ими пучков можно описывать и в волновом, и в геометрическом приближении. В качестве критерия применимости этих приближений удобно использовать так называемое число Френеля , где a, L – характерные размеры задачи поперёк пучка и вдоль направления его распространения. Условие NF>>1 соответствует применимости геометрического приближения. При NF£1 необходимо учитывать также волновые свойства электромагнитного излучения.


            В геометрическом приближении условие устойчивости резонатора имеет вид:. Расстояние между зеркалами Lp в этом выражении всегда положительно, а R1 и R2 положительны только для вогнутых т.е. фокусирующих зеркал и отрицательны для зеркал с выпуклой поверхностью. Для устойчивых резонаторов существует стационарное распределение интенсивности электромагнитного поля. В общем случае интенсивность излучения в устойчивых резонаторах распределена не равномерно по всему объёму резонатора, а сосредоточена внутри области, называемой каустикой (рис.9). Радиусы w1, w2, этой области на зеркалах а также её минимальный радиус w0 в месте перетяжки определяются длиной волны и параметрами резонатора (R1, R2,  Lp). Для основного типа колебаний их можно рассчитать с помощью соотношений:

Страницы: 1, 2, 3



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать