Динамический хаос. Созидающая роль хаоса. Порядок. Закон сохранения энтропии-информации

Означает ли это, что в некоторых случаях второе начало термодинамики может нарушаться? Острая дискуссия на эту тему длилась многие годы и, в конце концов, завершилась победой сторонников строгого соблюдения фундаментальных законов природы. Но при этом был сделан ряд существенных уточнений, касающихся не самих законов, а границ их применимости к реальным системам. Так сказать, не самой структуры научного языка, а смысла используемых в нем слов. Например, ревизии пришлось подвергнуть смысл понятия «хаос».

Хаос, царящий в равновесных системах, носит сугубо статистический характер, и мы говорим лишь о вероятности отклонения системы от состояния равновесия. Реакция такой системы на то или иное возмущающее воздействие линейна – она прямо пропорциональна возмущающей силе и стремится вернуть систему в прежнее состояние. Так, если по гладкой трубе с небольшой скоростью течет жидкость, то в ней случайно возникают малые завихрения, но эти завихрения сами собой гасятся, и в целом поток остается упорядоченным, ламинарным.

Но если система сильно неравновесна, то есть обладает значительным избытком свободной энергии, то в ней может возникать хаос особого рода, называемый динамическим; реакция такой системы на возмущающие воздействия нелинейна и может быть сколь угодно большой при сколь угодно малом первичном возмущении. Так, если скорость движения жидкости по трубе превышает некоторую критическую величину, то малейшая неоднородность потока немедленно приведет к катастрофическому превращению ламинарного потока в неупорядоченный, турбулентный.

Однако, динамический хаос замечателен тем, что за внешне совершенно непредсказуемым поведением системы кроется строгий детерминизм – все происходящие в ней процессы можно математически рассчитать с любой требуемой точностью. Еще одна особенность такого хаоса заключается в том, что он может служить источником самозарождения строго упорядоченных структур. Например, в турбулентном потоке могут возникать устойчивые вихри – подобные вихри (так называемую «дорожку Кармана») можно наблюдать за быстро плывущей лодкой.


 

 

 

 

 

 

 

 

4. ЗАКОН СОХРАНЕНИЯ ЭНТРОПИИ-ИНФОРМАЦИИ

Исследуем некоторые закономерности поведения энергии организованной материи объекта (Еом). Одна из основных закономерностей вытекает из второго начала термодинамики. Второе начало утверждает, что энтропия изолированной термодинамической системы не уменьшается или, иными словами, порядок в данной системе не растет. Изменение функции, определяющей энергию организованной материи объекта, обратно пропорционально изменению ее аргумента - энтропии (в философско-математической формуле этот аргумент расположен в знаменателе), поэтому данная функция для таких систем не будет являться возрастающей. Эта закономерность отображена графически на рис. 1.


Рис. 1


        Следует отметить, что абсолютно изолированных систем в природе не существует и данный закон является законом поведения систем, взаимодействие которых с другими системами настолько мало, что им можно пренебречь на фоне других, более сильных взаимодействий. Изолированная система - это модель, в которой кажущиеся слабыми взаимодействия с другими системами исключены из рассмотрения.
        Второе начало термодинамики является серьезным препятствием на пути проводимых рассуждений. Дело в том, что действие, заключающееся в присвоении объекту всех свойств энергии, должно включать в себя, также, и ее основное свойство - закон сохранения. В данном же случае из второго начала термодинамики следует - и это отображено на рис 1, - что данная энергия бесследно исчезает, поскольку функция является убывающей. И все-таки попробуем утверждать, что что-то здесь не так. Заминка, проблема есть, но, возможно, что также существует либо ее решение, либо путь для поиска такого решения.
       Действительно, если внимательно присмотреться к рис. 1, то причина проблемы будет видна невооруженным глазом. В данном случае достаточно вспомнить, каким образом вводилась энергия организованной материи. Процесс ее введения заключался в том, что сначала было установлено, что состояние объекта определяют все, в том числе и так называемые временные свойства. Только после такого действия стало возможным приравнять объект к энергии. Следовательно, раз состояние объекта определяют временные свойства, то и состояние энергии (или просто энергию) также определяют временные свойства. Поэтому некорректность поведения функции, изображенной на рис. 1, ее кажущаяся несовместимость с законом сохранения энергии заключается в том, что энергия организованной материи изолированной системы рассматривается изменяющейся во времени, т.е. по внутреннему свойству. Ожидать здесь, что данная функция не будет являться возрастающей или убывающей, бессмысленно. Изображенная на данном рисунке закономерность показывает лишь зависимость Eом от изменения времени, но не доказывает нарушения закона сохранения энергии.
       Сказанное может пояснить простой пример. Известно, что вес объекта определяется следующим соотношением: P = mg, где P - вес, m - масса, g - ускорение свободного падения. Изобразим на графике (рис. 2) зависимость изменения значений веса P от изменения значений одного из ее аргументов - m. Рис. 2 отображает тот факт, что с увеличением значений аргумента m и при неизменном ускорении свободного падения возрастают значения функции P(m,g), т.е. данная функция является возрастающей.


Рис. 2


        Но, при условии проведения реального эксперимента над конкретным объектом, подобный результат был бы невозможен, если бы речь шла об изолированной системе. Действительно, сам факт изменения массы говорит о том, что каким-то образом масса добавляется к объекту, каким-то образом она привносится в систему этого объекта. Изолированность объекта в данном эксперименте нарушается, об его изолированности здесь не может быть и речи. В изолированной системе масса (вещество) не может бесследно исчезнуть или появиться из ничего. Изменение массы, в данном случае, явилось бы следствием взаимодействия нескольких систем, но, отнюдь, не следствием изоляции.
       Рассмотренный пример показывает, что система, изменение энергии которой изображено на рис. 1, также не является изолированной. Соответствующая рис. 2 система не является изолированной "по массе", соответствующая рис. 1 - "по времени". Существенным отличием здесь можно назвать только то, что одна из функциональных зависимостей является возрастающей, а другая - убывающей.
        Таким образом, ничто не мешает сделать обоснованное утверждение, что в мире существует закон сохранения энергии организованной материи. Но, поскольку определяющим аргументом этой энергии является информация (негэнтропия), а также энтропия, то можно говорить о законе сохранения информации (энтропии). Принципиальный смысл этого закона состоит в том, что если какое-то свойство материального объекта, например, ВРЕМЯ, добавляется к системе, то из другой системы оно исчезает и наоборот. Таким образом, закон сохранения информации является всего лишь расширением законов сохранения вещества и энергии.


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ЗАКЛЮЧЕНИЕ

 

Динамический хаос — явление в теории динамических систем, при котором поведение нелинейной системы выглядит случайным, несмотря на то, что оно определяется детерминистическими законами. Причиной появления хаоса является неустойчивость по отношению к начальным условиям и параметрам: малое изменение начального условия со временем приводит к сколь угодно большим изменениям динамики системы. Порядок – это противоположное явление хаосу. Принципиальный смысл  закона сохранения информации (энтропии) состоит в том, что если какое-то свойство материального объекта, например, ВРЕМЯ, добавляется к системе, то из другой системы оно исчезает и наоборот. Таким образом, закон сохранения информации является всего лишь расширением законов сохранения вещества и энергии. Созидающий Аспект Хаоса, вытекает из необходимости эволюции Иерархий Божественных Сущностей, что метафизически именно через Хаос являются Сынами Парабрамана.

 

 

 

 

 

 

 

 

 

 

 

 

 

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ


1.     Игнатова В.А. Естествознание: Учебное пособие. М.: ИКЦ «Академкнига», 2002. – 254 с.

2.     Паномарев О.П. Концепции современного естествознания, учебник ч. 1, 2, Москва, 2006.

3.     Найдыш В.М. - Концепции современного естествознания. Учебник. - Изд. 2-е. - М., 2004. - 622 с.

4.     Хорошавина С.Г. Концепции современного естествознания. Изд. 4-е. 2005. - 480 с.





Страницы: 1, 2



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать