Ефекти ехо-камери та перспективи їх практичного використання
Зміст
1. Вступ
2. Електромагнітні імпульси у середовищі
2.1 Взаємодія електромагнітних хвиль з речовиною
2.2 Квантовій опис атомів і резонансна взаємодія з електромагнітним полем
2.3 «Площа» імпульсів і їх вплив на атом
3. Загальна характеристика явища фотонної луни та його експериментальне спостереження
3.1 Якісній розгляд. Аналогія зі спіновою луною
3.2 Експеріментальне дослідження явища
3.3 Місце фотонної луні серед інших явищ нелінійної оптики
4. Математичній апарат для опису фотонної луні
Висновки
Література
1. Вступ
Мета роботи - розповісти про клас нестаціонарних фізичних явищ - ефекти ехо-камера, з яких фотонна ехо-камера - одне з найбільш яскравих і таких, що володіють чудовими перспективами практичного вживання.
Знаходячись в горах, лісі або просто величезному залі, ми чуємо ехо-камеру - віддзеркалення голосно виголошених звуків з деякою затримкою в часі. Ехо-камера пояснюється віддзеркаленням звукових хвиль від перешкод - схилів гір, узлісь лісу, стенів будинків. Це явище відоме людині з незапам'ятних часів. Само назва "ехо-камера" означає ім'я німфи, яка перетворилася на тінь в покарання за свою балакучість (по одній з легенд) так, що вона могла повторювати лише кінці слів. Тоді людині явище ехо-камера здавалася таємничою. Людина одушевляла довколишню природу. Сьогодні ми б сказали, що людина неживу природу наділяла властивостями штучного інтелекту: вона запам'ятовувала сказану людиною словесну фразу і відтворювала її через деякий час, тобто володіла пам'яттю і властивостями обробки інформації. Вже давно явище ехо-камера широко використовується в технології, наприклад при вимірі глибини ехолотом, а в нашому XX столітті - в радіолокації.
Ті явища, які сьогодні включають в назву термін "ехо-камера", мають абсолютно іншу фізичну природу. Такі явищ дуже багато: ехо-камера спину, фотонна ехо-камера, циклотронна ехо-камера, плазмова ехо-камера, електроакустична ехо-камера, осциляторна ехо-камера, поляризаційна ехо-камера і ін. У всіх цих явищах ми маємо справу з рухом (в основному що коливає або обертальним) великого числа більш менш незалежних елементів: механічних або магнітних моментів ядер, дипольних моментів атомів або молекул, пружними коливаннями малих часток або фероелектричних і феромагнітних доменів і так далі Всім цим явищам властиво така властивість, як когерентність і звернення в часі. Під зверненням часу слід розуміти такий процес, який повторює послідовність подій деякого руху в зворотному по ходу часу порядку. У свою чергу, поняття когерентності широко використовується в науці в різному контексті. Само слово "когерентність" означає узгодженість. У загальній фізиці під когерентністю слід розуміти рух декількох осциляторів (коливань) з постійною в часі різницею фаз. У оптиці для опису явища інтерференції світлових променів існує точніше визначення, засноване на використанні властивостей кореляційних функцій джерел випромінювань. У побутовому сенсі рух регулярний, синхронізоване для великого числа учасників процесу можна вважати когерентним, тоді як їх випадковий, незалежний один від одного хаотичний рух буде некогерентним. На цьому далі зупинимося детально, але спочатку розглянемо просту наочну модель на побутовому, добре відомому прикладі для розуміння конкретних нестаціонарних ефектів типа ехо-камери.
2. Електромагнітні імпульси у середовищі
2.1 Взаємодія електромагнітних хвиль з речовиною
Електромагнітна взаємодія — одна з чотирьох фундаментальних взаємодій. Електромагнітна взаємодія існує між частками, що володіють електричним зарядом. З сучасної точки зору електромагнітна взаємодія між зарядженими частками здійснюється не прямо, а лише за допомогою електромагнітного поля.
З точки зору квантової теорії поля електромагнітна взаємодія переноситься безмасовим бозоном — фотоном (часткою, яку можна представити як квантове збудження електромагнітного поля). Сам фотон електричним зарядом не володіє, а значить не може безпосередньо взаємодіяти з іншими фотонами.
З фундаментальних часток в електромагнітній взаємодії беруть участь ті, що також мають електричний заряд частки: кварки, електрон, мюон і тау-частка (з ферміонів), а також заряжені калібрувальні бозони.
Електромагнітна взаємодія відрізняється від слабкої і сильної взаємодії своїм дальнодіючим характером — сила взаємодії між двома зарядами спадає лише як друга міра відстані. По такому ж закону спадає з відстанню гравітаційна взаємодія. Електромагнітна взаємодія заряджених часток набагато сильніше гравітаційного, і єдина причина, по якій електромагнітна взаємодія не виявляється з великою силою на космічних масштабах, — електрична нейтральність матерії, тобто наявність в кожній області Вселеної з високою мірою точності рівних кількостей позитивних і негативних зарядів.
У класичних (неквантових) рамках електромагнітна взаємодія описується класичною електродинамікою.
Коротке зведення основних формул класичної електродинаміки
На провідник із струмом, поміщений в магнітне поле, діє сила Ампера:
На заряджену частку, рухому в магнітному полі, діє сила Лоренца:
1. У тому числі електромагнітна взаємодія і між електрично нейтральними в цілому частками (тобто, коли їх сумарний заряд нуль), але складові частини яких володіють зарядами, так що взаємодія не зводиться до нуля, хоча і швидко убуває з відстанню. Наприклад, нейтрон — нейтральна частка, проте він містить в своєму складі заряджені кварки і тому бере участь в електромагнітній взаємодії (зокрема, володіє ненульовим магнітним моментом).
2. Розділ квантової теорії поля, що описує електромагнітну взаємодію носить назву квантової електродинаміки. Це зразковий, найдобріше розроблений і такий, що піддається розрахунку розділ квантової теорії поля, і взагалі одна з найбільш успішних і точних - в сенсі експериментального підтвердження - галузей теоретичної фізики.
3. Слабка взаємодія швидко убуває із-за масивності його переносника - векторного W або Z бозона.
4. Сильна взаємодія між кварками спадає з відстанню ще набагато повільніше, а точніше, судячи з усього, його сила взагалі з відстанню не спадає; проте всі відомі частки, спостережувані у вільному стані, нейтральні відносно "сильного заряду" - кольори - оскільки або зовсім не містять кварків, або включають декілька кварків, сума кольорів яких нуль, тому в основному полі сильної взаємодії - глюонне поле - зосереджено між "кольоровими" кварками - усередині складеної частки, а його "залишкова частина", що поширюється зовні, - дуже мала і швидко спадає.
2.2 Квантовій опис атомів і резонансна взаємодія з електромагнітним полемо
У класичній електродинаміці взаємодія між зарядами здійснюється через поле: заряд породжує поле і це поле діє на інші заряди. У квантовій теорії взаємодія поля і заряду виглядає як випускання і поглинання зарядом квантів Поля — фотонів. Взаємодія ж між зарядами, наприклад між двома електронами в Квантова теорія поля є результатом їх обміну фотонами: кожен з електронів випускає фотони (кванти електромагнітного поля, що переносить взаємодію), які потім поглинаються ін. електроном. Це справедливо і для ін. фізичних полів: взаємодія в Квантова теорія поля— результат обміну квантами поля.
У цій досить наочній картині взаємодії є, проте, момент, що потребує додаткового аналізу. Поки взаємодія не почалася, кожна з часток є вільною, а вільна частка не може ні випускати, ні поглинати квантів. Дійсно, розглянемо вільну нерухому частку (якщо частка рівномірно рухається, завжди можна перейти до такої інерціальної системи відліку, в якій вона покоїться). Запасу кінетичної енергії в такої частки немає, потенційною — випромінювання енергетично неможливе.
Аби вирішити цей парадокс, потрібно врахувати, що дані частки є квантовими об'єктами і що для них істотні незрозумілостей співвідношення. Ці співвідношення зв'язують невизначеності координати частки (Dх) і її імпульсу (Dр):
(1.1)
Є і друге співвідношення — для незрозумілостей енергії DE і специфічного часу Dt даного фізичного процесу (тобто часу, протягом якого процес протікає):
. (1.2)
Якщо розглядається взаємодія між частками за допомогою обміну квантами поля (це поле часто називається проміжним), то за Dt природно прийняти тривалість такого акту обміну. Питання про можливість випускання кванта вільною часткою відпадає: енергія частки, згідно (10), не є точно визначеною; за наявності ж квантового розкиду енергій DE закони збереження енергії і імпульсу не перешкоджають більш ні випусканню, ні поглинанню квантів, що переносять взаємодію, якщо лише ці кванти мають енергію ~ DE і існують протягом проміжку часу.
Проведені міркування не лише усувають вказаний вище парадокс, але і дозволяють отримати важливі фізичні виводи. Розглянемо взаємодію часток в ядрах атомів. Ядра складаються з нуклонів, тобто протонів і нейтронів. Експериментально встановлено, що поза межами ядра, тобто на відстанях, великих приблизно 10–12 см, взаємодія невідчутно, хоча в межах ядра воно свідомо велике. Це дозволяє стверджувати, що радіус дії ядерних сил має порядок L ~ 10–12 см.Саме такий дорога пролітають, отже, кванти, що переносять взаємодію між нуклонами в атомних ядрах. Час перебування квантів "в дорозі", навіть якщо прийняти, що вони рухаються з максимально можливою швидкістю (із швидкістю світла з), не може бути менше, ніж Dt. Згідно попередньому, квантовий розкид енергії DE взаємодіючих нуклонів виходить рівним DE ~. В межах цього розкиду і повинна лежати енергія кванта — переносника взаємодії. Енергія кожної частки маси m складається з її енергії спокою, рівною mc2,и кінетичної енергії, зростаючої у міру збільшення імпульсу частки. При не дуже швидкому русі часток кінетична енергія мала в порівнянні з mc2, так що можна прийняти DE " mc2. Тоді з попередньої формули виходить, що квант, що переносить взаємодії в ядрі, повинен мати масу порядку. Якщо підставити в цю формулу чисельні значення величин, то виявляється, що маса кванта ядерного поля приблизно в 200—300 разів більше маси електрона.