Электроснабжение металлургического завода

Сопротивления линии:


R = r0 * L = 3,12 * 0,3 = 0,94

X = х0 * L = 0,11 * 0,3 = 0,033


Потеря напряжения в линии, в В:


Потеря напряжения в линии в %:



Оставляем сечение 16 ммІ

4) Проверяем сечение кабеля на термическую стойкость при коротком замыкании в мм2:


Fтерм ≥  , (6.7)


где Bк – тепловой импульс, А2·с


 (6.8)


где  - действующее значение периодической составляющей тока трехфазного КЗ в начале и конце линии (точка К2), в А;

tпривед - приведенное или расчетное время КЗ складывается из времени релейной защиты и собственного времени отключения, в с:


tпривед = tРЗ + tОВ (6.9)


tРЗ - обычно берется в пределе от 1,2 до 2,5 с


tпривед = 2 + 0,05= 2,05 c


СТ – термический коэффициент, учитывающий разницы нагрева в

нормальных условиях и в условиях КЗ, с учетом допустимой температуры и материала проводника, выбираем из литературы [3, С.190], СТ = 92 Ас2/мм2

6.2 Расчёт линий питающих предприятие

Воздушные линии 35 и 110 кВ выполняются неизолированным проводом марки А, АС или самонесущими изолированными воздушными проводами (СИП).

Выбираем провод марки АС.

Производим выбор сечения провода по четырем условиям:

1) По длительно-допустимому нагреву максимальным расчётным током:


Производим расчет тока, в А:



По таблицам ПУЭ из условия, что Iдл.доп.  Iр.max находим сечение провода: S = 10 мм2 при I дл.доп .= 84 A

2) По экономической плотности тока, в мм2:



где Iр.нор – ток в линии при нормальном режиме, в А

(в нашем случае: Iр.нор = Ip.max/2 Iр.нор = 37 А)

 γЭК - экономическая плотность тока, в А/мм2, определяется по справочным таблицам в зависимости от типа проводника и числа часов использования максимальной активной нагрузки в год (Тм) [2]

Тм приводится в литературе [5,C.80]

При Тм = 3000 час/год γЭК = 2,5 А/ мм2

2-х сменная работа

Рассчитываем сечение:



Увеличиваем сечение до 16 мм2

3) Проверяем сечение кабельной линии по условию допустимой потери напряжения:

Допустимые потери в линии согласно ПУЭ не должны превышать (ΔUдоп ) 5% , т.е. должно выполняться условие ΔUдоп ≥ ΔUрасч.

Расчетное значение потери напряжения в линии определяем по формуле, в В:



где Р р.цеха – активная максимальная расчетная нагрузка, в кВ;

Qр.цеха - реактивная максимальная расчетная нагрузка, в кВАР;

Uср ном – среднее номинальное напряжение в линии, в кВ;

R = ro · L – активное сопротивление в линии, в Ом

X = xo · L – индуктивное сопротивление в линии, в Ом

L -длина линии (расстояние от ГПП до районной ПС), в км (указана в задании), L = 4 км

r0 и х0 - - удельные активные и реактивные сопротивления провода марки АС из литературы [7, С. 40, Т. 2.65]

Из таблиц находим: r0 = 2,06 Ом/км, х0 = 0,43 Ом/км.

Рассчитаем активные и реактивные сопротивления лини:


R = ro · L=2,06 * 4 = 8,24

X = xo · L=0,43 * 4 = 1,72


Потеря напряжения в линии в В:



Потеря напряжения в линии в %:

Оставляем сечение 16 мм2



4) Допустимые потери на «корону», проверяются только для ВЛ 110кВ и выше, но практикой эксплуатации установлено и техническим расчетами подтверждено, что потери на корону не превышают допустимых значений, если сечение проводов не более 70 мм2.

В нашем случае напряжение воздушной линии 75 кВ и расчет потерь на «корону» не производим.


6.3 Расчет сборных шин ГПП

Сборные шины распределительных устройств, выбирают в зависимости от конструктивного исполнения, способа присоединения коммутационных аппаратов, ячеек КСО или КРУ и т.д.

В основном сборные шины выполняются из алюминиевых сплавов прямоугольного сечения, одно или многополюсными, или коробчатого сечения.

Выбираем материал шин – алюминий.

 Расчет сборных шин РУ 10 кВ производим в следующем порядке:

1) Выбираем сечение шины из условий длительно допустимого нагрева максимально расчетным током.

Рассчитываем максимальный ток, в А:


 (6.13)


Из условия: Iдл.доп ≥ Iрmax из ПУЭ выбираем шины прямоугольного сечения:

S= 40Ч4 ммІ, Iдл.доп = 480 А

2) Проверяем сечение шин на термическую стойкость при сквозных коротких замыканиях, в мм2:


 (6.14)


Рассчитываем тепловой импульс при токах КЗ, в кА2·с


Вк =·tприв , (6.15)


где - ток трехфазного КЗ в точке К1, в кА;

tприв – расчетное время термической стойкости, в с, которое больше расчетного времени кабельной линии на 0,5 с ( на ступень выше по сравнению с расчетом кабельной линии по условию селективности), т.е.

tпривед =  (6.16)


Ст – термический коэффициент, учитывающий разницу нагрева в условиях нормального режима и в условиях КЗ с учетом допустимой температуры и материала проводника, выбираем из литературы [3, С.190], СТ = 95 Ас2/мм2


Рассчитываем: tпривед =


Оставляем сечение 160 мм2

4) Для проверки электродинамической стойкости жестких шин выполним механический расчет [5].

Установлено, что механический резонанс не возникает, если частота собственных колебаний шинных конструкций меньше 30 Гц или больше 200 Гц.

Для алюминиевых шин частота собственных колебаний, в Гц


 (6.17)


где L- расстояние между изоляторами (длина пролета), м;

J - момент инерции поперечного сечения шины относительно оси перпендикулярно направлению изгибающей силы, см4;

q - площадь поперечного сечения шины, см2.

Определим расчетную длину пролета L, т.е. расстояние между точками крепления вдоль шины.

Если принять fо ≥200 Гц, то


 (6.18)



Расположим шины на изоляторах на ребро.

Момент инерции [5, C], в см4


 


где h – ширина шины, в см;

 b – толщина шины, в см.

Площадь поперечного сечения шины, в см2:


q = h · b (6.20)


Рассчитываем момент инерции:



Проверяем шину на электродинамическую стойкость как статическую систему с нагрузкой равной наибольшей электродинамической силе.

Наибольшее удельное усилие, в Н/м


(6.21)


где Iуд – ударный ток при КЗ на шинах в точке К2, в А;

 а – расстояние между осями крепления, в м;


а = 130 + b (6.22)


130 – минимально допустимое расстояние в свету между токоведущими частями для РУ 10 кВ по ПУЭ, в мм.


а = 160 +40 = 200 мм ≈ 0.2 м


Рассчитываем наибольшее удельное усилие



Изгибающий момент, создаваемый распределенной силой в пределах одного пролета, в Н·м:


 (6.23)


где L – длина пролета, м.

Расчетное напряжение в материале шины, в МПа:


(6.24)


где W – момент сопротивления поперечного сечения оси, перпендикулярной направлению изгиба, в см3.

Момент сопротивления шины, расположенной на ребро, в см3:


 (6.24)


Рассчитываем момент сопротивления шины



и напряжение в материале шины:



Шины считаются прочными, если расчетное напряжение меньше допустимого:


σдоп ≥ σрасч (6.25)


Допустимые напряжения в литературе [5].

Выбираем марку материала шины: алюминиевый сплав АД31Т1 с допустимым напряжением 200 МПа и σдоп = 90.

7. Выбор высоковольтного оборудования

7.1 Выбор высоковольтного выключателя со стороны 6(10) кВ

Высоковольтные выключатели устанавливаются на всех присоединениях систем электроснабжения для автоматического отключения цепей в аварийном режиме и для коммутации токов нагрузки.

Выключатель - это единственный аппарат, позволяющий автоматическое управление, т.е. действие по сигналу релейной защиты или противоаварийной автоматики.

Для отключения токов короткого замыкания в выключателях устанавливают специальные дугогасительные камеры.

Типы выключателей и их конструкция определяются способом гашений дуги.

В распределительном устройстве 10(6) кВ выбираем камеры КСО с высоковольтными выключателями типа: ВВУ-СЭЩ-Э(П)3-10-20/1000


Из условия: Uном ≥ U уст , (7.1)


где Uном – номинальное напряжение высоковольтного выключателя, в кВ.

Из паспортных данных выключателя: Uном =10 кВ

U уст - номинальное напряжение распределительного устройства, в кВ

ИЗ главы 3.1 U уст = 35кВ

Условие (7.1) выполняется.

Произведём расчет и выбор выключателя для вводного фидера ПС.

1) Максимальный расчетный ток по формуле (6.13) , в А:



Номинальный ток выключателя: Iном = 1000 А,

Страницы: 1, 2, 3, 4, 5, 6, 7, 8



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать