Электротехника с основами электроники

5. Повторить п.4 с параллельным соединением резисторов.

6. Повторить п.4 со смешанным соединением резисторов.

Пример составленной схемы представлен на рис.2.


Рис.2. Варианты подключения измерительных приборов и нагрузки


Чтобы быстро и правильно собрать на стенде электрическую цепь, не запутавшись в ней, необходимо собрать сначала все последовательные цепи, а уже затем присоединить все параллельные цепи.

7. Результаты измерений, а также технические характеристики приборов и оборудования, представить в виде таблиц произвольной формы.

8. После окончания работы отключить питание стенда, разобрать схему.

9. Составить краткие выводы по работе.

3. Контрольные вопросы

1. Из каких элементов состоит электрическая цепь и каково их назначение?

2. Что называют узлом и ветвью электрической цепи?

3. Каков порядок сборки электрической цепи?

4. Какие системы электроизмерительных приборов вы знаете?

5. Как условно изображают системы электроизмерительных приборов?

6. Какие условные обозначения наносят на шкалы приборов?

7. Начертите схему включения амперметра, вольтметра, ваттметра.

8. Как поступить, если стрелка прибора в отключенном состоянии отклонилась влево (вправо) от нулевой отметки?

Как поступить, если стрелка прибора отклонилась за максимальное деление шкалы?

10. Как поступить, если стрелка ваттметра отклонилась влево от нулевой отметки?

11. Как определить цену деления комбинированного (многопредельного) прибора?

12. Как измерить ЭДС аккумулятора?

13. Два одинаковых сопротивления соединены последовательно (параллельно). Чему равно результирующее сопротивление?

14. Что будет, если в исследуемой цепи поменяли местами амперметр и вольтметр?


Методические указания к лабораторной работе №2

ИССЛЕДОВАНИЕ РЕЖИМОВ РАБОТЫ АККУМУЛЯТОРОВ

Цель работы

Изучить режимы работы аккумулятора как источника постоянного тока, определить его внутренне сопротивление, проанализировать энергетические соотношения и особенности работы аккумуляторов при их последовательном и параллельном соединении.

1. Основные теоретические положения.

Аккумулятор является химическим источником энергии. Его основными параметрами являются электродвижущая сила (ЭДС) Е и его внутреннее сопротивление . ЭДС характеризует способность источника энергии создать ток в электрической цепи, она численно равна напряжению между его зажимами при отсутствии тока (холостой ход, нагрузка отключена), и внутри источника направлена от отрицательного зажима к положительному (рис.1).

Если к аккумулятору подключить нагрузочный реостат с сопротивлением R, то в цепи возникает ток, величина которого определяется по закону Ома для электрической цепи с ЭДС


 (1)


Преобразуем это выражение и получим формулу зависимости напряжения на зажимах приемника от тока нагрузки (рис.1)



Так как IR=U, то U=E-IRB. (2)

Величина внутреннего сопротивления аккумулятора RB практически постоянна и составляет сотые доли Ом, поэтому падение напряжения на внутреннем сопротивлении аккумулятора IRB растет пропорционально току нагрузки. Таким образом, величина напряжения на зажимах аккумулятора (приемника) будет уменьшаться с увеличением тока нагрузки. При этом внутри аккумулятора теряется часть мощности, . Величина выделившейся тепловой энергии определяется по закону Джоуля-Ленца.


ч, (3)


где t - время прохождения тока, ч.

Следовательно, внутреннее сопротивление - параметр, характеризующий тепловые потери в источнике и влияющий на его энергетические характеристики. Внутреннее сопротивление аккумулятора может быть определено на основании закона Ома по данным режимов холостого хода и какого-либо рабочего режима


 (4)


или по эмпирической формуле для 100% заряженного аккумулятора (кислотного) при температуре 20°С


, (5)


где Uном - напряжение на зажимах аккумулятора при номинальном разрядном токе, В;

Q - емкость аккумулятора, А×ч.

Величина внутреннего сопротивления аккумулятора может быть определена по его внешней характеристике - зависимости напряжения на зажимах аккумулятора от тока нагрузки. Напряжение на зажимах аккумулятора линейно зависит от силы тока и нагрузки и графически изображается в виде прямой линии, пересекающей оси I и U (рис.2). Точка пересечения с осью U (I=0, R¥, режим холостого хода) дает величину ЭДС, а точка пересечения с осью I (U=0, R=0, режим короткого замыкания) дает величину тока в нагрузке при сопротивлении внешней нагрузки, равной нулю. В этом случае:


E=IK×RB и , (6)


где IK - ток короткого замыкания.

Если известна только часть внешней характеристики (рис.2), то внутреннее сопротивление аккумулятора можно определить по формуле


, Ом (7)


Важнейшими эксплуатационными параметрами аккумулятора являются также его зарядный и разрядный токи, максимальная мощность, отдаваемая в нагрузку и коэффициент полезного действия. Эти величины указываются в паспортных данных аккумулятора. При практических расчетах величина зарядного тока принимается


, А - кислотные аккумуляторы (8)

, А - щелочные аккумуляторы (9)


Величина разрядного тока зависит от мощности нагрузки, а его номинальное значение равно примерно зарядному току. Максимальное значение разрядного тока Iраз. max=3×Q для кислотных стартерных аккумуляторных батарей (пуск стартера). Коэффициент полезного действия h равен отношению полезной мощности приемника Р2 ко всей мощности источника Р:


 (8)

Или


Отсюда следует, что при холостом ходе (R=¥) КПД приближается к единице, при коротком замыкании (R=0) он равен нулю, в согласованном режиме (R=RB) он равен 0,5. При режиме отдачи максимальной мощности, т.е. I=E/2RВН, получим:


 (9)


Такой низкий КПД недопустим в электрических установках большой мощности. Поэтому стремятся, чтобы внутреннее сопротивление источника было значительно меньше сопротивления приемника. В ряде случаев один аккумулятор не обеспечивает нормальную работу потребителя. В этом случае используют последовательное, параллельное или смешанное соединение аккумуляторов. При последовательном соединении величина тока в нагрузке равна


, А (10)


Напряжения на зажимах источников соответственно равны:


U1=E1-IRB1; U2=E2-IRB2; Un=En-IRBn.


Напряжение на зажимах потребителя можно определить по формулам:


U   (11)


Из формул видно, что при последовательном соединении аккумуляторов в батареи режимы эксплуатации (ток разряда и заряда) в значительной степени зависят от внутреннего сопротивления наихудшего элемента. Увеличение внутреннего сопротивления приводит к увеличению потерь в аккумуляторе, DP=I2RВН и невозможности создания необходимых зарядных и разрядных токов.

При параллельном соединении аккумуляторы соединяются между собой зажимами одинаковой полярности и ток в нагрузке определяется по первому закону Кирхгофа:


I=I1+ I1+... + In,


где I - ток в нагрузке, А;

I1... In - токи источников, А.

При параллельном соединении аккумуляторов анализ их работы следует вести, используя метод узловых потенциалов. Напряжение на зажимах приемников равно:


 (12)


где Ei - ЭДC i-го источника, В;

Gi - проводимость i-й параллельной ветви.

Токи в ветвях определяются по закону Ома:


 (13)


Из формулы видно, что токи в ветвях распределяются обратно пропорционально сопротивлениям ветвей. Поэтому, если параллельно соединены два аккумулятора с равными ЭДС и разными внутренними сопротивлениями (различное техническое состояние аккумуляторов), то ток нагрузки будет распределяться между ними обратно пропорционально их внутренним сопротивлениям:


 (14)


При неравных ЭДС один из источников может работать в режиме приемника электрической энергии (ток со знаком “минус”), что приведет к саморазряду аккумулятора-источника даже при отключенной нагрузке.

Данные теории и практики указывают на то, что ЭДС аккумулятора не зависит от размера пластин, но изменяется в зависимости от плотности электролита согласно эмпирической формуле:


Е=0,84 + g (15)


где g - плотность электролита при 15°, г/см3;

Е - ЭДС аккумулятора, В.

Поскольку процессы заряда и разряда аккумулятора сопровождаются изменением плотности электролита, ЭДС и напряжение аккумулятора тоже должны изменяться. В процессе разряда начальное значение ЭДС аккумулятора при плотности электролита 1, 28 г/см3 составляет 2,1 В. Разряд аккумулятора следует прекращать, когда напряжение будет на 10...15% ниже номинального значения, что соответствует 1, 7 В при плотности электролита 1, 16 г/см3.

В стационарных условиях заряд аккумуляторных батарей проводят или при постоянном напряжении или при постоянном токе. При этом в конце заряда допускают предельное значение напряжения, равное 2,5...2.6 В на аккумулятор или 15...15.6 В на батарею из шести элементов. Следовательно, напряжение зарядного устройства должно быть 15...16 В. На автомобиле в нормальных условиях величина напряжения генератора не превышает 14,4 В и ограничивает заряд в указанных пределах. Общее напряжение для заряда шестивольтовых батарей 7,5 В. Для подсчета наибольшего возможного числа аккумуляторных батарей m, которое можно соединить последовательно в группу, следует учитывать напряжение зарядной сети и напряжение на один аккумулятор 2,7 В в конце заряда m=C/2,7 (16)

Достоинствами заряда при постоянном напряжении являются:

возможность заряжать аккумуляторы различной емкости;

заряд происходит быстрее (для получения 90-95% емкости требуется 4-5 часов);

большой ток в начале заряда батарее не вредит, т.к величина его быстро уменьшается;

газообразование в конце заряда меньше, что благоприятно сказывается на пластинах;

регулировочный резистор в зарядной цепи позволяет заряжать сульфатированные аккумуляторы (рис.3)


 (17)


В процессе эксплуатации техническое состояние аккумуляторной батареи может быть проверено аккумуляторным пробником, например Э107, Ф108. Если напряжение отдельных аккумуляторов батареи отличается более чем на 0,1 В или в течение 5 сек. проверки оно падает, батарею следует зарядить или отправить в ремонт.

Степень разряженности батареи определяется также пробником.


Напряжение на аккумуляторе, В

Разрядка аккумулятора,%

1,7...1,8

0 (полностью заряжен)

1,6...1,7

25

1,5...1,6

50

1,4...1,5

75

Страницы: 1, 2, 3, 4, 5, 6



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать