Елементи теорії відносності та основне рівняння ідеального газу

Щоб нагріти тіло, достатньо виконати над ним роботу. Так наковальня нагрівається при ударах, газ нагрівається при стисканні.

Вперше ці положення розвинув російський вчений М. В Ломоносов. Ще задовго до нашої ери виникло вчення про найменші частинки з яких складається будь-яка речовина. Але вперше широкий розвиток атомна гіпотеза одержала в працях Ломоносова /1711–1765 рр./, який зробив спробу дати єдину картину всіх відомих в його час фізичних і хімічних явищ. При цьому він виходив з корпускулярного /молекулярного/ уявлення про будову матерії. Виступаючи проти пануючої в його час теорії тепловоду /гіпотези теплової рідини, місткість якої в тілі визначає ступінь його нагрітості/. М.В. Ломоносов «причину тепла» бачив у обертовому русі частинок тіла. Таким чином, Ломоносов вперше сформулював молекулярно-кінетичні уявлення.


Фізична модель та рівняння стану ідеального газу


Для опису властивостей реальних газів необхідно враховувати розміри молекул і сили взаємодії між ними. Але при невеликих тисках і дуже низьких температурах розмірами молекули і їх взаємодією можна знехтувати.

Такий газ, молекули якого можна вважати матеріальними точками, які не взаємодіють між собою, називається ідеальним газом.

Стан газу характеризується трьома величинами – об’ємом V, тиском P і температурою T. Ці величини називаються параметрами газу. Всі параметри даної маси газу пов’язані між собою з допомогою рівняння стану газу.


, (1)


де B – деяка константа.

Ця константа для 1 моля позначається буквою R і називається універсальною газовою сталою. Чисельне значення сталої R знайдемо, підставивши в рівняння стану значення параметрів газу в нормальних умовах:



Отже для 1 моля маємо таке рівняння:


PV=RT (2)

Для будь-якої маси газу m рівняння стану запишеться так:


PV=(m/m) RT (3)

Це рівняння називається рівнянням Клайперона-Мендєлєєва. В формулі /3/ (m/m) являє собою число молей даної маси газу.

Відмітимо, що для того, щоб рівняння /2/ описувало властивості реального газу, в нього потрібно ввести поправки на об’єм В який займали б молекули газу при щільному упакуванні і на силу притягання між молекулами a/V2. Тоді одержимо таке рівняння:

(P-a/V2) (V-B) = RT (4)


Рівняння /4/ називають рівнянням Ван-дер-Ваальса. Сталі а і в називають поправними Ван-дер-Ваальса. З формули /4/ випливає, що при р®¥:


V-b®0, тобто V®b


Отже, при збільшенні тиску об’єм газу прямує до власного об’єму молекул газу, а не до нуля, формула /4/ є набагато кращим наближенням до дійсності, ніж /2/. Але і вона не абсолютно точна.


Основне рівняння молекулярно-кінетичної теорії газу. Середня кінетична енергія молекул газу


З курсу фізики середньої школи відомо, що властивості ідеальних газів описуються рівняннями Бройля-Маріота, Гей-Люсака, та ін., знайденими експериментально. Але можна, теоретично вивести рівняння, з якого всі зазначені вище закони будуть випливати як наслідки. Тому таке рівняння називають основним рівнянням кінетичної теорії газів.

Основним рівнянням кінетичної теорії газів називають рівняння, що встановлює зв’язок між тиском газу і його енергією. При своєму рухові молекули газу неперервно ударяється об стінки посудини. Удари чергуються один за одним дуже швидко, усереднюються і створюють постійну силу, що діє на стінки посудини. Внаслідок цього газ створює на стінки посудини тиск, який дорівнює:


, (5)


де f – сила, що діє на стінку, S – площа стінки.

Знайдемо цей тиск. Для цього розглянемо посудину з газом у вигляді кубу з довжиною ребра l (рис. 1) в якому хаотично рухаються молекули.


Рис. 1


В зв’язку з повною хаотичністю руху молекул можна вважати, що  всіх молекул рухаються прямолінійно між передньою і задньою стінками куба,  молекул – між правою і лівою стінками і  – між верхньою і нижньою гранями. Від такого спрощення результат дії молекул не змінюється.

При пружному ударі об стінку, маса якої нескінченно велика в порівнянні з масою молекули m, кожна молекула, що рухається зі швидкістю n, в результаті чого її імпульс зміниться на величину, рівну:

.

Ця зміна імпульсу молекули відбувається під дією імпульсу сили , що діє зі сторони стінки на молекулу під час удару. За другим законом Ньютона маємо:


,

, (6)


де  – тривалість удару.

По третьому закону Ньютона сила, чисельно рівна , буде діяти зі сторони молекули на стінку. Відскочивши від стінки, молекула полетить до протилежної стінки, і, відскочивши від неї, знову вернеться до першої стінки через деякий час Dt. Середня сила Df, що діє на стінку за весь час між двома послідовними ударами молекули, визначиться з умови, що її імпульс  повинний чисельно дорівнювати імпульсу сили , що діє в продовж . Тоді замість рівняння (6) маємо:


 (7)


Величина Dt являє собою час, за який молекула проходить відстань 2l. Отже:


 (8)


Підставляючи це значення в формулу (7), одержимо:


 (9)


Ми знайшли середню силу удару однієї молекули. Але різні молекули рухаються з різними швидкостями Тоді сумарна сила удару молекул об стінку буде рівна:


 (10)


де  – число молекул, що рухаються між двома протилежними стінками.

В першій частині рівняння (10) винесемо  за дужки, помножимо і поділимо його на . Одержимо:


 (11)


Величина  являє собою середнє значення квадратів швидкостей молекул, а величина, рівна  називається середньою квадратичною швидкістю. Тоді замість (11) маємо:


 (12)


Як вказано вище, число молекул, що рухаються між двома протилежними стінками, . Отже, одержуємо:


 (13)


Підставивши це значення f в формулу (5) і враховуючи, що площа грані  знаходимо:


. (14)


Але  – об’єм кубу. Отже  – являє собою число молекул в одиниці об’єму. Тому маємо:


. (15)


З останнього виразу випливає, що тиск, що виконує газ на стінки посудини визначається числом молекул в одиниці об’єму , масою молекули m і середньою квадратичною швидкістю.

Формулу (10) можна записати в іншому вигляді. Помноживши і поділивши праву частину на два, одержимо:


, (16)


але  – представляє собою середню кінетичну енергію руху молекули. Тому маємо:


. (17)


тобто тиск газу пропорційний середній кінетичній енергії молекул одиниці об’єму.

Співвідношення (15) і еквіваленти (17) називається основним рівнянням кінетичної теорії газів згідно (17) тиск газу дорівнює 2/3 кінетичної енергії поступального руху молекул, вміщених в одиниці об’єму.

Таким чином, для обрахунків тиску газу необхідно знати середню кінетичну енергію молекул або їхню середню квадратичну швидкість. Найчастіше відома температура газу. Тому знайдемо формулу для визначення цих величин через температуру газу. Для цього помножимо ліву і праву частини рівняння (17) на об’єм одного моля Vo, одержимо:


 (10)


Але по  – кількість молекул в 1 молі. Отже  – число Авогадро.

Тому формула (18) має вигляд:


 (19)


Порівнюючи вираз (19) з рівнянням стану ідеального газу , знаходимо:


 (20)


Звідси


 (21)


Оскільки R і N – величини сталі, то і величина k рівна:


 (22)


теж буде сталою. Вона носить назву сталої Больцмана. Її значення дорівнює:



Після чого формула (21) записується так:


 (23)


Стала Больцмана k є однією з найважливіших фундаментальних фізичних сталих і має зміст універсальної газової сталої, віднесеної до однієї молекули газу.

З рівняння (23) випливає молекулярно-кінетичний зміст температури. Температура газу визначається середньою кінетичною енергією поступального руху молекул.

Вираз (23) можна записати так:


 (24)


Звідси можна визначити середню квадратичну швидкість молекул:


 (25)

 (26)


Підставивши в формулу (17) значення середньої кінетичної енергії за формулою (23):


 (27)


Рівняння (27) дозволяє обчислити кількість молекул, наприклад, в електровакуумних приладах.


Розподіл молекул газів по швидкостях при тепловій рівновазі (розподіл Максвелла)


Як же розподіляються молекули газів в залежності від їхніх швидкостей тобто, скільки молекул рухається швидко і скільки повільно? Цю задачу вперше розв’язав Максвелл. Він знайшов рівняння, за допомогою якого можна визначити, скільки молекул має швидкість, близьку до даної швидкості . Іншими словами, рівняння Максвелла дозволяє визначити кількість молекул, що мають швидкість в інтервалі (n,n + Dn).

Визначимо спочатку, від чого повинна залежати кількість частинок Dn, швидкості яких лежать в інтервалі (n,n + Dn). Наприклад в інтервалі 100, 101 м/с або 367, 370 м/с і т.д. Очевидно, найбільша кількість частинок має швидкості, близькі до середньої швидкості, а кількість частинок з дуже малими швидкостями, як і кількість з дуже великими швидкостями, мала. Отже, кількість частинок Dn, що приходиться на однакові інтервали швидкостей Dn залежить від розглядуваної швидкості n. Іншими словами, так звана функція розподілу Максвелла повинна бути функцією швидкостей f(n), тобто:

Фізично також ясно, що число  буде пропорційне ширині інтервала швидкостей Dn і кількості молекул в одиниці об’єму n. Тому можемо записати таке співвідношення:


 (28)


Або, переходячи до нескінченно малих величин  і , одержуємо:


 (29)


Звідки знаходимо:


 (30)


Функцію f(n) називають функцією розподілу. Її фізичний зміст випливає з (30). Дійсно при Dn = 1 м/c маємо: , тобто, f(n) рівна долі частинок, швидкості яких лежать в одиничному інтервалі швидкостей поблизу даної швидкості n.

На основі теорії ймовірностей Максвелл знайшов вигляд цієї функції:


.


На рис. 2 приведений графік функції f(n). З графіка видно, що f(n) функція має максимум при певному значенні швидкості . Це значить, що найбільшу кількість молекул в газі мають швидкості, близькі до . Тому швидкість  називають найбільш ймовірною.


Рис. 2


Найбільш ймовірна швидкість рівна:


 (31)


Враховуючи значення найбільш ймовірної швидкості формулу (31) можна записати в такому вигляді:


 (32)


Формула Максвелла дозволяє обчислити і середню арифметичну швидкість. Вона рівна:


 або  (33)


Тепер можна знайти формули для визначення кількості молекул dn, швидкості яких лежать в інтервалі (n,n + dn). Так, підставивши значення f(n) по формулі (33) в формулу (30) одержимо:


 (34)


Таким чином, властивості газу визначаються такими швидкостями:

Середня квадратична –

Середня арифметична –

Найбільш ймовірна –

Звідси видно, що  (рис. 3).


Рис. 3


Фізичний зміст цих швидкостей полягає в наступному. За допомогою графіку (рис. 3) можна знайти кількість молекул, швидкості яких лежать між  і . Для цього перемножимо середнє значення ординати цього інтервалу на ширину інтервалу. Тоді одержимо:


.


Ми знайшли відносну кількість молекул, швидкості яких лежать в інтервалі (, ), але цей добуток дорівнює площі фігури, закресленої на рис. 3. Таким чином, маючи графік розподілу Максвелла для якогось газу можна легко визначити відносну кількість молекул, швидкості яких лежать в даному інтервалі.

Функція розподілу Максвелла залежить від температури (рис. 4).


Рис. 4


Як видно з рис. 4 при  максимум функції обертається в гострий пік.

Отже діапазон швидкостей навколо  при зменшенні температури зменшується. При підвищенні температури все більше зменшується кількість молекул, швидкості яких менше найбільш ймовірної і збільшується частина молекул, швидкості яких перевищують найбільш ймовірну.


Висновки


1. Молекулярна фізика розглядає будь-яке тіло як таке, що складається з надзвичайно великої кількості частинок – атомів чи молекул і характеризує таку велику сукупність середніми величинами на основі методів статистичної фізики.

2. Основним рівнянням ідеального газу, яке враховує можливу зміну всіх параметрів газу, є рівняння Менделєєва-Клапейрона, або рівняння стану ідеального газу.

3. Тиск газу пропорційний середній кінетичній енергії молекул одиниці об’єму, або тиск газу пропорційний абсолютній температурі газу, а температура газу є мірою середньої кінетичної енергії поступального руху молекул.

4. Розподіл Максвелла дає змогу визначити частки молекул, швидкості яких розміщені в інтервалі від n до n + dn. Розподіл дає змогу знайти швидкості молекул: середню, середню квадратичну, найбільш ймовірну.


Страницы: 1, 2



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать