Физика и современная энергетика

Напор ГЭС создается концентрацией падения реки на используемом участке плотиной(рис1), либо деривацией , либо плотиной и дери­вацией совместно (рис. 3). Основное энергетическое оборудование ГЭС размещается в здании ГЭС: в машинном зале электростанции — гидроагрегаты, вспомогательное оборудование,   устройства  автоматического управления и контроля; в центральном посту управления — пульт оператора-диспетчера или автооператор гидро­электростанции. Повышающая транс­форматорная подстанция размещается как внутри здания ГЭС, так и в отдельных зда­ниях или на открытых площадках. Рас­пределительные устройства зачастую располагаются на открытой площадке. Здание ГЭС может быть разделено на секции с одним или несколькими агрегатами и вспомогательным оборудованием, отделённые от смежных частей здания. При здании ГЭС или внутри него создаётся монтаж­ная площадка для сборки и ремонта раз­личного оборудования и для вспомогательных операций по обслуживанию ГЭС.

По установленной мощности (в .Мвт) различают ГЭС мощные (св. 250), сред­ние (до 25) и малые (до 5). Мощность ГЭС зависит от напора На (разности уровней верхнего и нижнего бьефа), расхода воды , используемого в гидротурбинах, и кпд гидроагрегата . По ряду причин (вследствие, например сезонных изменений уровня воды в во­доёмах, непостоянства нагрузки энерго­системы, ремонта гидроагрегатов или гидротехнических сооружений и т. п.) напор и расход воды непрерывно меняются, а кроме того, меняется расход при регули­ровании мощности ГЭС. Различают го­дичный, недельный и суточный циклы режима работы ГЭС.

По максимально используемому напо­ру ГЭС делятся на высоконапорные (более 60 м), средненапорные (от 25 до 60 м) и низконапорные (от 3 до 25 м). На равнинных реках напоры редко пре­вышают 100 м , в горных условиях посредством плотины можно создавать напоры до 300 м и более, а с помощью дерива­ции — до 1500 м. Классификация по напору приблизительно соответствует ти­пам применяемого энергетического оборудова­ния: на высоконапорных ГЭС применяют ковшовые и радиально-осевые  турби­ны с металлическими спиральными камера­ми; на средненапорных — поворотнолопастные и радиально-осевые турбины с железобетонными и металлическими спираль­ными камерами, на низконапорных — поворотнолопастные турбины в железо­бетонных спиральных камерах, иногда горизонтальные турбины в капсулах или в открытых камерах. Подразделение ГЭС по используемому напору имеет при­близительный, условный характер.

По схеме использования водных ре­сурсов и концентрации напоров ГЭС обыч­но подразделяют на русловые, приплотинные, деривационные с напорной и без­напорной деривацией, смешанные, гидроаккумулирующие и приливные.  В русловых и приплотинных ГЭС напор воды создаётся плотиной, пе­регораживающей реку и поднимающей уровень воды в верхнем бьефе. При этом неизбежно некоторое затопление долины реки. В случае сооружения двух плотин на том же участке реки площадь затопле­ния уменьшается. На равнинных реках наибольшая экономически допустимая площадь затопления ограничивает высо­ту плотины. Русловые и приплотинныс ГЭС строят и на равнинных многоводных реках и на горных реках, в узких сжатых долинах.

В состав сооружений русловой ГЭС, кроме плотины, входят здание ГЭС и во­досбросные сооружения (рис. 4). Состав гидротехнических сооружений зависит от вы­соты напора и установленной мощности. У русловой ГЭС здание с размещенными в нём гидроагрегатами служит продолже­нием плотины и вместе с ней создаёт напорный фронт. При этом с одной сто­роны к зданию ГЭС примыкает верхний бьеф, а с другой — нижний бьеф. Под­водящие спиральные камеры гидротурбин своими входными сечениями заклады­ваются под уровнем верхнего бьефа, выходные же сечения отсасывающих труб погружены под уровнем нижнего бьефа.

В соответствии с назначением гидроузла в его состав могут входить судоходные шлюзы или судоподъёмник, рыбопро­пускные сооружения, водозаборные соо­ружения для ирригации и водоснабже­ния. В русловых ГЭС иногда единственным сооружением, пропускающим воду, является здание ГЭС. В этих случаях по­лезно используемая вода последовательно проходит входное сечение с мусорозадер-живающими решётками, спиральную ка-

меру, гидротурбину, отсасывающую тру­бу, а по спец. водоводам между сосед­ними турбинными камерами произво­дится сброс паводковых расходов реки. Для русловых ГЭС характерны напоры до 30—40 м  к простейшим русловым ГЭС относятся также ранее строившиеся сель­ские ГЭС небольшой мощности. На круп­ных равнинных реках основное русло пере­крывается земляной плотиной, к которой примыкает бетонная водосливная пло­тина и сооружается здание ГЭС. Такая компоновка типична для многих отечественных ГЭС на больших равнинных реках. Волж­ская ГЭС им. 22-го съезда КПСС— наиболее крупная среди станций русло­вого типа.

При более высоких напорах оказывает­ся нецелесообразным передавать на зда­ние ГЭС гидростатичное давление воды. В этом случае применяется тип плотиной ГЭС, у которой напорный фронт на всём протяжении перекрывается плотиной, а здание ГЭС располагается за пло­тиной, примыкает к нижнему бьефу (рис. 5). В состав гидравлической трассы меж­ду верхним и нижним бьефом ГЭС тако­го типа входят глубинный водоприёмник с мусорозадерживающей решёткой, тур­бинный водовод, спиральная камера, гидротурбина, отсасывающая труба. В качестве дополнит, сооружений в состав узла могут входить судоходные сооруже­ния и рыбоходы, а также дополнительные водо­сбросы Примером подобного типа станций на многоводной реке служит Братская ГЭС на реке Ангара.

К началу Великой Отечеств, войны 1941—45 в СССР было введено в эксплуатацию 37 ГЭС общей мощностью более 1500 Мвт. Во время войны было приостановлено на­чатое строительство ряда ГЭС общей мощ­ностью около 1000 Мвт (1 млн. квт). В 60-х гг. наметилась тенденция к сни­жению доли ГЭС в общем мировом производстве электроэнергии и всё большему использованию ГЭС для покрытия пико­вых нагрузок. К 1970 всеми ГЭС мира производилось около 1000 млрд. квт-ч электроэнергии в год, причём начиная с 1960 доля ГЭС в мировом производстве сни­жалась в среднем за год примерно на 0,7% . Особенно быстро снижается доля ГЭС в общем производстве электроэнергии в ранее традиционно считавшихся «гидроэнер­гетическими» странах (Швейцария, Ав­стрия, Финляндия, Япония, Канада, от­части Франция), т. к. их экономический гидроэнергетический потенциал практи­чески исчерпан.

Несмотря на снижение доли ГЭС в общей выработке, абсолютные значения производства электроэнергии и мощности ГЭС непрерывно растут вследствие строитель­ства новых крупных электростанций. В 1969 в мире насчитывалось свыше 50 дей­ствующих и строящихся ГЭС единичной мощностью 1000 Мвт и выше, причём 16 из них — на территории бывшего Советского Союза.

Важнейшая особенность гидроэнергетических ресурсов по сравнению с топливно-энергетическими ресурсами — их непрерывная возобновляемость. Отсутствие потребности в топливе для ГЭС определяет низ­кую себестоимость вырабатываемой на ГЭС электроэнергии. Поэтому сооруже­нию ГЭС, несмотря на значительные, удельные капиталовложения на 1 квт установлен­ной мощности и продолжительные сроки строи­тельства, придавалось и придаётся боль­шое значение, особенно когда это связано с размещением электроёмких производств.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Атомные электростанции.


атомная электростанция (АЭС) -  электростанция, в которой атомная (ядер­ная) энергия преобразуется в элект­рическую. Генератором энергии на АЭС является атомный реактор . Тепло, которое выделя­ется в реакторе в результате цепной реакции деления ядер некоторых тяжёлых элементов, затем так же, как и на обыч­ных тепловых электростанциях (ТЭС), преобразуется в электроэнергию, В отли­чие от ТЭС, работающих на органическом топливе, АЭС работает на ядерном горю­чем (в основе 233U, 235U, 239Pu) При делении 1 г изотопов урана или плутония высво­бождается 22 500 квт • ч, что эквивалентно энергии, содержащейся в 2800 кг услов­ного топлива. Установлено, что мировые энергетические ресурсы ядерного горючего (уран, плутоний и др.)  существенно превышают энергоресурсы природных запасов органического, топлива (нефть, уголь, природный газ и др.). Это открывает широкие перспективы для удовлетворе­ния быстро растущих потребностей в топ­ливе. Кроме того, необходимо учиты­вать всё увеличивающийся объём потреб­ления угля и нефти для технологических целей мировой химической промышленности, которая становится серьёзным конкурентом тепло­вых электростанций. Несмотря на откры­тие новых месторождений органического топ­лива и совершенствование способов его добычи, в мире наблюдается тенденция к относительному, увеличению его стоимости. Это создаёт наиболее тяжёлые условия для стран, имеющих ограниченные запасы топлива органического происхождения. Очевидна необходимость быстрейшего развития атомной энергетики, края уже занимает заметное место в энергетическом балансе ряда промышленных стран мира.

Первая в мире АЭС опытно-промышленного на­значения (рис. 1) мощностью 5 Мвт была пущена в СССР 27 июня 1954 г. в г. Обнинске. До этого энергия атомного ядра использовалась  в военных це­лях. Пуск первой АЭС ознаменовал от­крытие нового направления в энергети­ке, получившего признание на 1-й Международной научно-технической конференции по мирному использованию атомной энер­гии (август 1955, Женева).

В 1958 была введена в эксплуатацию 1-я очередь Сибирской АЭС мощностью 100 Мвт (полная проектная мощность 600 Мвт). В том же году развернулось строительство Белоярской АЭС, а 26 апреля 1964 генератор 1-й очереди (блок мощностью 100 Мвт) выдал ток в Свердловскую энергосистему, 2-й блок мощностью 200 Мвт сдан в эксплуата­цию в октябре 1967. Отличительная особенность Белоярской АЭС — перегрев пара (до получения нужных параметров) непосредственно в ядерном реакторе, что позволило применить на ней обычные современные турбины почти без всяких переделок.

Страницы: 1, 2, 3



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать