Физика, основы теории

Силы всегда появляются парами и внутри каждой пары они всегда одной природы.

Силы, возникающие при взаимодействии, тел никогда не уравновешивают друг друга, поскольку приложены к разным телам.


7. Сила тяжести. Вес тела. Перегрузки. Невесомость

Силу, с которой тело притягивается к Земле под действием поля тяготения Земли, называют силой тяжести. По закону всемирного тяготения на поверхности Земли (или вблизи этой поверхности) на тело массой m действует сила тяжести


,


где М – масса Земли; R – радиус Земли.

Если на тело действует только сила тяжести, то оно совершает свободное падение. Модуль ускорения свободного падения g находят по формуле


.


Из данной формулы следует, что ускорение свободного падения не зависит от массы m падающего тела, т.е. для всех тел в данном месте Земли оно одинаково.

Модуль силы тяжести можно определить по формуле . Эта сила имеет гравитационную природу. Вектор силы тяжести приложен к центру тяжести тела.

Из закона всемирного тяготения следует, что сила тяжести и вызываемое ею ускорение свободного падения уменьшаются при увеличении расстояния от Земли. На высоте  от поверхности Земли модуль ускорения свободного падения определяют по формуле


.

Силу, с которой вследствие притяжения к Земле тело действует на свою опору или подвес, называют весом тела.

Вес тела является упругой силой, приложенной к опоре или подвесу (т.е. к связи).

Если тело покоится или движется прямолинейно и равномерно, то его вес равен силе тяжести, т.е. .

Если тело движется ускоренно, то его вес зависит от этого ускорения и его направления относительно направления вектора ускорения свободного падения.

Если тело движется с ускорением а, направленным вертикально вверх, то его вес  Увеличение веса тела, вызванное его ускоренным движением, называют перегрузкой.

Если тело движется с ускорением а, направленным вертикально вниз (т.е. совпадающим с направлением ускорения свободного падения), то его вес уменьшается. В этом случае он определяется по формуле

При свободном падении . Следовательно, в данном случае , т.е вес отсутствует. Если тело движется только под действием силы тяжести (свободно падает), то оно находится в состоянии невесомости. Характерным признаком этого состояния является отсутствие у свободно падающих тел деформаций и внутренних напряжений. Причина невесомости тел заключается в том, что сила тяжести сообщает свободно падающему телу и его опоре (или подвесу) одинаковые ускорения.


8. Импульс тела. Импульс силы. Закон сохранения импульса

Уравнение второго закона Ньютона можно представить в виде , или .

Внеся  под знак дифференциала, получим .

Векторную величину, равную произведению массы тела на его скорость, называют импульсом тела. Таким образом, импульс тела определяется по формуле . Следовательно, , т.е. производная импульса материальной точки по времени равна равнодействующей всех сил, приложенных к точке.

Последнюю формулу можно представить в виде .

Приращение импульса за время  равно


=.


При  =. Величину , равную произведению силы на время её действия, называют импульсом силы.

Изменение импульса тела за время  равно импульсу силы, действующей на тело в течение этого времени.

Рассмотрим систему, состоящую из N материальных точек (систему тел).

Силы, с которыми на данное тело действуют остальные тела системы, называют внутренними.

Силы, обусловленные воздействием тел, не принадлежащих системе, называют внешними.

В случае отсутствия внешних сил систему называют замкнутой.

Импульсом системы называют векторную сумму импульсов тел, образующих систему


.


Группу тел, взаимодействующих не только между собой, но и с телами, не входящими в состав этой группы, называют незамкнутой системой. Силы, с которыми на тела данной системы действуют тела, не входящие в эту систему, называю внешними (обычно внешние силы обозначают буквой , а внутренние силы – буквой .

Рассмотрим взаимодействие двух тел в незамкнутой системе. Изменение импульсов данных тел происходит как под действием внутренних сил, так и под действием внешних сил.

Согласно второму закону Ньютона, изменения импульсов рассматриваемых тел у первого и второго тел составляют



где t – время действия внешних и внутренних сил. Почленно сложив данные выражения, получим .

В этой формуле  - полный импульс системы,

 (согласно третьему закону Ньютона),  - равнодействующая всех внешних сил, действующих на тела данной системы. С учетом вышеизложенного получаем формулу , из которой следует, что полный импульс системы изменяется только под действием внешних сил. Если же система замкнутая, т.е. , то  и, следовательно, .

Закон сохранения импульса для замкнутой системы тел формулируется следующим образом: импульс замкнутой системы тел остается постоянным при любых взаимодействиях тел этой системы между собой.

На законе сохранения импульса основано реактивное движение.


9. Механическая работа и мощность


Если действующая на тело сила  вызывает его перемещение , то действие силы характеризуется механической работой

,  где  - угол между направлением силы и перемещения. Формула справедлива для случая когда тело движется прямолинейно и действующая на него сила остается постоянной. Если сила изменяется, то .

Механическая работа является мерой изменения энергии. За единицу работы в системе Си принимают джоуль (Дж).

Средней мощностью  называют величину, равную отношению работы  к промежутку времени , за который она совершается


.


Мгновенная мощность определяется по формуле . Учитывая, что , получаем , где v – мгновенная скорость.

За единицу мощности в системе СИ принимают ватт (Вт).

На практике часто применяют внесистемную единицу мощности – лошадиную силу.

1 л.с. = 735 Вт


10. Кинетическая и потенциальная энергия

Физическая величина, характеризующая способность тела или системы тел совершать работу, называется энергией.

Энергия может быть обусловлена движением тела с некоторой скоростью (кинетическая энергия), а также нахождением тела в потенциальном поле сил (потенциальная энергия).

Кинетическая энергия

Рассмотрим случай, когда тело массой m под действием силы F изменяет свою скорость от  до . Определим работу силы, приложенной к телу


.

.


Так как механическая работа является мерой изменения энергии, то величина  представляет собой энергию, обусловленную движением тела.

Энергию, которой обладает тело вследствие своего движения называют кинетической .

Работа совершаемая силой при изменении скорости тела, равна изменению кинетической энергии тела


Потенциальная энергия тела в поле силы тяжести

При падении тела массой m с высоты до высоты  над Землей сила тяжести совершает работу


 или .


Сила тяжести является консервативной силой, а поле тяготения – потенциальным. Работа силы тяжести равна изменению потенциальной энергии тела, взятому с противоположным знаком


.


Потенциальная энергия тела в поле силы тяжести .

Энергия, которая определяется взаимным расположением тел или частей одного и того же тела называется потенциальной.


11. Закон сохранения полной механической энергии


Рассмотрим движение тела в замкнутой системе, в которой действуют только консервативные силы. Пусть, например, тело массой m свободно падает. При переходе тела из состояния 1 в состояние 2 сила тяжести совершает работу


.


В то же время . Следовательно, . Преобразовав данное выражение, получим .

Сумма кинетической и потенциальной энергии тела называется полной механической энергией тела.



Согласно закону сохранения полной механической энергии: полная механическая энергия замкнутой системы тел, взаимодействующих друг с другом только консервативными силами, при любых движениях этих тел не изменяется. Происходят лишь взаимные превращения потенциальной энергии в кинетическую и обратно.

Системы, в которых сохраняется полная механическая энергия, называются консервативными.

Системы, в которых полная механическая энергия не сохраняется называются диссипативными (диссипация – переход энергии в другой вид, например, механической во внутреннюю).

В общем случае закон сохранения энергии в природе формулируется следующим образом:

Энергия тел никогда не исчезает и не появляется вновь: она лишь превращается из одного вида в другой или переходит от одного тела к другому.

12. Основные положения молекулярно-кинетической теории и их опытное обоснование. Масса и размеры молекул


Теорию, объясняющую строение и свойства тел на основе закономерностей движения и взаимодействия частиц, из которых состоят тела, называют молекулярно-кинетической.

Основные положения молекулярно-кинетической теории (МКТ) формулируются следующим образом:

1.                 Любое вещество имеет дискретное (прерывистое) строение. Оно состоит из отдельных частиц (молекул, атомов, ионов), разделенных промежутками.

2.                 Частицы находятся в состоянии непрерывного хаотического движения, называемого тепловым.

3.                 Частицы взаимодействуют друг с другом. В процессе их взаимодействия возникают силы притяжения и отталкивания.

Справедливость МКТ подтверждается многочисленными наблюдениями и фактами.

Наличие у веществ проницаемости, сжимаемости и растворимости свидетельствует о том, что они не сплошные, а состоят из отдельных, разделенных промежутками частиц. С помощью современных методов исследования (электронные и ионные микроскопы) получены изображения наиболее крупных молекул.

Броуновское движение и диффузия свидетельствуют о том, что частицы находятся в непрерывном движении.

Наличие прочности и упругости тел, явления смачивания, поверхностного натяжения в жидкостях и т.д. доказывают существование сил взаимодействия между молекулами.

Масса и размеры молекул.

Размер молекул является величиной условной. Его оценивают следующим образом. Между молекулами наряду с силами притяжения действуют и силы отталкивания, поэтому молекулы могут сближаться лишь до некоторого расстояния. Расстояние предельного сближения центров молекул называют эффективным диаметром молекулы. (При этом условно считают, что молекулы имеют сферическую форму.)

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать