Физика подкритического ядерного реактора
Введение
Основным прикладным результатом фундаментальных исследований в ядерной физике явилось становление атомной энергетики. Производимая в ядерных реакторах энергия составляет около 6% всего мирового производства энергии. В некоторых странах ( Франция, Швеция ) атомные электростанции дают более половины всей электроэнергии. Однако развитие атомной энергетики породило и общественные проблемы, которые наиболее ярко проявились в трагической Чернобыльской катастрофе. После Чернобыля опасность для здоровья людей и окружающей среды, связанная с ядерной энергетикой, вызвала обоснованная негативную реакцию общественного мнения. Возникшие при этом вопросы относились не только к промышленникам и политикам, но и к научному сообществу физиков, работающих в области ядерной физики и физики элементарных частиц. В конце концов выяснилось, что физики разработали ядерный реактор, который, как оказалось, может выйти из-под контроля. Поэтому задача развития безопасной ядерной энергетики, проведение фундаментальных исследований по этой тематике в последние годы привлекают повышенное внимание.
Ядерным (или атомным) реактором называется устройство, в котором осуществляется управляемая реакция деления ядер. Ядра урана, особенно ядра изотопа 235U, наиболее эффективно захватывают медленные нейтроны. Вероятность захвата медленных нейтронов с последующим делением ядер в сотни раз больше, чем быстрых. Поэтому в ядерных реакторах, работающих на естественном уране, используются замедлители нейтронов для повышения коэффициента размножения нейтронов. Эти реакторы получили название гетерогенных реакторов. Уже давно известен возможный вариант безопасной ядерной энергетики - освоение управляемого термоядерного синтеза. Однако, несмотря на принципиальную осуществимость этой программы, до сих пор перед исследователями стоят ещё не преодолённые технологические трудности. Для завершения программы исследований по управляемому термоядерному синтезу необходимы большие материальные вложения и значительное время. В то же время также достаточно давно известен и другой вариант безопасной энергетики, основанный на работе ядерного реактора в подкритическом режиме, для чего требуется облучение реактора потоком нейтронов. Эти нейтроны могут быть получены с помощью интенсивных пучков протонов или более тяжелых ядер. В последние годы работа в этом направлении значительно активизировалась как в область фундаментальных исследований, так и в разработке конкретных проектов установок, производящих энергию.
Атомный реактор.
Источником энергии реактора служит процесс деления тяжелых ядер. Напомним, что ядра состоят из нуклонов, то есть протонов и нейтронов. При этом количество протонов Z определяет заряд ядра Ze: оно равно номеру элемента из таблицы Менделеева, а атомный вес ядра А – суммарному количеству протонов и нейтронов. Ядра, имеющие одинаковое число протонов, но различное число нейтронов, являются различными изотопами одного и того же элемента и обозначается символом элемента с атомным весом слева вверху. Например, существуют следующие изотопы урана: 238U, 235U, 233U,...
Масса ядра М не просто равна сумме масс составляющих его протонов и нейтронов, а меньше её на величину М, определяющую энергию связи
(в соответствии с соотношением ) М=Zmp+(A-Z)mn-(A)A, где(А)с - энергия связи, приходящаяся на один нуклон. Величина (А) зависит от деталей строения соответствующего ядра... Однако наблюдается общая тенденция зависимости её от атомного веса. А именно, пренебрегая мелкими деталями, можно описать эту зависимость плавной кривой, возрастающей при малых. А, достигающей максимума в середине таблицы Менделеева и убывающей после максимума к большим значениям А. Представим себе, что тяжелое ядро с атомным весом А и массой М разделилось на два ядра А1 и А2 с массами соответственно М1 и М2, причем А1 + А2 равно А либо несколько меньше его, так как в процессе деления могут вылететь несколько нейтронов. Возьмем для наглядности случай А1 + А2 = А. Рассмотрим величину разности масс начального ядра и двух конечных ядер, причем будем считать что А1 = А2, так, что (А1)=(А2), М=М-М1-М2=-(А)А+ (А1)(А1 +А2) =А((А1)- (А1)). Если А соответствует тяжелому ядру в конце Периодической системы, то А1 находится в середине и имеет максимальное значение(А2). Значит, М>0 и, следовательно, в процессе деления выделяется энергия Ед=Мс2. Для тяжелых ядер, например для ядер урана, ((А1)- (А))с2=1 МэВ. Так что при А=200 имеем оценку Ед = 200 МэВ. Напомним, что электрон-вольт (эВ) внесистемная единица энергии, равная энергии, приобретаемой элементарным зарядом под действием разности потенциалов 1В ( 1эВ = 1,6*10-19 Дж). Например, средняя энергия, выделяемая при делении ядра 235U
Ед = 180 МэВ = 180 106 эВ.
Таким образом, тяжелые ядра являются потенциональными источниками энергии. Однако самопроизвольное деление ядер происходит исключительно редко и практически значения не имеет. Если же в тяжелое ядро попадает нейтрон, то процесс деления может резко убыстриться. Это явление происходит с различной интенсивностью для различных ядер, и мерой его служит эффективное поперечное сечение процесса. Напомним, как определяются эффективные сечения и как они связаны с вероятностями тех или иных процессов. Представим себе пучок частиц, (например, нейтронов), падающих на мишень, состоящую из определённых объектов, скажем ядер. Пусть N0 - число нейтронов в пучке, n-плотность ядер, приходящаяся на единицу объема (1 см3 ). Пусть нас интересуют события определённого сорта, например деление ядер мишени. Тогда число таких событий N будет определяться формулой N=N0nlэф, где l- длинна мишени и эф называется поперечным сечением процесса деления (или любого другого процесса) заданной энергией Е, соответствующей энергии налетающих нейтронов. Как видно из предыдущей формулы, эффективное сечение имеет размерность площади(см2). Оно имеет вполне понятный геометрический смысл: это площадка, при попадании в которую происходит интересующий нас процесс. Очевидно, если сечение большое, процесс идёт интенсивно, а маленькое сечение соответствует малой вероятности попадания в эту площадку, следовательно, в этом случае процесс происходит редко.
Итак, пусть для некоторого ядра мы имеем достаточно большое эффективное сечение процесса деления при этом, при делении наряду с двумя большими осколками А1 и А2 могут вылететь несколько нейтронов. Средне число дополнительных нейтронов называется коэффициентом размножения и обозначается символом k. Тогда реакция идёт по схеме
n+A A1+A2+kn.
Родившиеся в этом процессе нейтроны, в свою очередь, реагируют с ядрами А, что даёт новые реакции деления и новое, ещё большее число нейтронов. Если k > 1, такой цепной процесс происходит с нарастающей интенсивностью и приводит к взрыву с выделением огромного кол-ва энергии. Но процесс этот можно контролировать. Не все нейтроны обязательно попадут в ядро А: они могут выйти наружу через внешнюю границу реактора, могут поглотиться в веществах, которые специально вводятся в реактор. Таким образом, величину k, можно уменьшить до некоторой kэф, которая равна 1 и лишь незначительно её превышает. Тогда можно успевать отводить производимую энергию и работа реактора становится устойчивой. Тем не менее в этом случае реактор работает в критическом режиме. Неполадки с отводом энергии привели бы к нарастающей цепной реакции и катастрофе. Во всех действующих системах предусмотрены меры безопасности, однако аварии, с очень малой вероятностью, могут происходить и, к сожалению происходят.
Как выбирается рабочее вещество для атомного реактора? Необходимо, чтобы в топливных элементах присутствовали ядра изотопа с большим эффективным сечением деления. Единица измерения сечения 1 барн = 10-24 см2. Мы видим две группы значений сечений: ( 233U, 235U, 239Pu ) и малые(232Th,238U). Для того, чтобы представить себе разницу, вычислим, какое расстояние должен пролететь нейтрон, чтобы произошло событие деления. Воспользуемся для этого формулой N=N0nlэф. Для N=N0=1 имеем Здесь n- плотность ядер, , где p- обычная плотность и m =1,66*10-24г- атомная единица массы. Для урана и тория n = 4,8.1022 см3. Тогда для 235U имеем l = 10см, а для 232Th l = 35 м. Таким образом, для реального осуществления процесса деления следует использовать такие изотопы как 233U, 235U, 239Pu. Изотоп 235U в небольшом кол-ве содержится в природном уране состоящем в основном из 238U, поэтому в качестве ядерного топлива обычно используют уран, обогащённый изотопом 235U. При этом в процессе работы реактора вырабатывается значительное кол-во ещё одного расщепляющегося изотопа- 239Pu. Плутоний получается в результате цепочки реакций
238U + n ()239U ()239Np ()239Pu,
где означает излучение фотона, а -- распад по схеме
Z (Z+1)+e +v.
Здесь Z определяет заряд ядра, так что при распаде происходит к следующему элементу таблицы Менделеева с тем же А, е- электрон и v-электронное антинейтрино. Необходимо отметить также, что изотопы А1, А2, получающиеся в процессе деления, как правило, являются радиоактивными с временами полураспада от года до сотен тысяч лет, так что отходы атомных электростанций, представляющие собой выгоревшее топливо, очень опасны и требуют специальных мер для хранения. Здесь возникает проблема геологического хранения, которое должно обеспечить надёжность на миллионы лет вперёд. Несмотря на очевидную пользу атомной энергетики, основанной на работе ядерных реакторов в критическом режиме, она имеет и серьезные недостатки. Это, во-первых, риск аварий, аналогичных Чернобыльской, и, во-вторых, проблема радиоактивных отходов. Предложение использовать для атомной энергетики реакторы, работающие в подкритическом режиме, полностью разрешает первую проблему и в значительной степени облегчает решение второй.
Страницы: 1, 2