Гидроэнергетический комплекс Сибири

Сегодня российская гидроэнергетика - это порядка 100 средних и крупных действующих ГЭС, около 45 ГВт установленной мощности и 172 млрд. кВтч годовой выработки, то есть примерно каждый пятый киловатт-час в стране производится на ГЭС. Однако помимо своей основной функции - выработки электроэнергии - гидроэнергетика решает ряд других важнейших задач.

В ходе реформирования российской электроэнергетики происходят существенные изменения в ее функционировании: в декабре 2004 года была создана Федеральная гидрогенерирующая компания (ОАО «ГидроОГК»), которая объединила около половины всех российских гидростанций (50 ГЭС с мощностью 23,3 ГВт) и стала крупнейшей российской генерирующей компанией. Стратегия развития компании до 2020 года предполагает удвоение мощностей, что позволит сохранить паритет в сфере энергетических мощностей.

Основными задачами в гидроэнергетики России на ближайшие несколько лет являются строительство новых энергетических мощностей и развитие существующих - их пять.

Первое - Бурейская ГЭС. Второе - Богучанская ГЭС, уникальный объект, по которому долгое время не было реального решения. Третье - Сангтугинская ГЭС - первый наш опыт выхода за рубеж - в апреле 2009 года планируется эту ГЭС полностью ввести в строй. Четвертым - беспрецедентным проектом в гидроэнергетической сфере назван проект импорта российской электроэнергии в Китай - это означает строительство новых мощностей объемом около 6 миллионов киловатт. В настоящее время прорабатывается вариант строительства новых энергомощностей на Дальнем Востоке.

По данным исследований, до настоящего времени не используется значительная часть электрических мощностей Сибири - порядка 4 млн кВт, что на 1 млн кВт больше мощности вновь строящейся Богучанской ГЭС. Электрическую энергию в этом регионе вырабатывают четыре крупнейшие в мире гидроэлектростанции, четыре крупнейшие в России тепловые электростанции и ряд других станций. Энергетические запасы Сибири составляют более 50 млн кВт, а установленная мощность сибирских электростанций - 45 млн кВт.

Только пять гидроэлектростанций Енисейского каскада могли бы вырабатывать 33,5 млн кВт, а входящая в его состав Туруханская ГЭС (12 млн кВт) - третья в мире по установленной мощности. С учетом возможного прироста электрических мощностей на тепловых (Березовская ГРЭС, Харанорская ГРЭС) и гидроэлектростанциях (Богучанская ГЭС) и существующих темпов роста потребляемых мощностей прогнозируемая величина избыточной электроэнергии по Сибири к 2010 г. может составить более 20 млрд кВт.ч.

Такой огромный ресурс неиспользуемой энергии требует новых схем сбыта. Наиболее перспективным и выгодным покупателем электроэнергии из Сибири является Китай. По данным исследований российских и зарубежных специалистов, транспортировка электроэнергии из Сибири в Центр России и на Дальний Восток на расстояния 3600 км и более неэкономична в отличие от экспорта излишков электроэнергии в Китай на расстояние 2500 км. Строительство Бурейской ГЭС решило проблему дефицита электроэнергии на Дальнем Востоке и позволяет осуществлять ее продажу в Корею и северные районы Китая.

Не раз поднимался вопрос о возобновлении проекта экспорта электроэнергии в Китай и строительства энергомоста «Россия-Китай», который бы позволил привлечь дополнительные инвестиции в энергетику России в целом и Сибири в частности. Китай ежегодно увеличивает свои мощности на 12-15%, а это почти 25 млн кВт. Существующие и вновь построенные электростанции открывают перед Россией широкую перспективу поставки высокотехнологической продукции

Пятая задача - развитие приливной гидроэнергетики как «проекта с качественно новым технологическим прорывом».



2 Гидроэнергетика Сибири


Сибирь характеризуется высокой долей гидроэлектростанций. Здесь находятся крупнейшие ГЭС Ангаро-Енисейского каскада, работающие в составе объединенной энергосистемы Сибири, а также Хантайская и Курейская ГЭС - в изолированной Норильской энергосистеме. Значительно меньше доля ГЭС в электроэнергетике Дальнего Востока. Причем в Объединенной энергосистеме Востока, обслуживающей его южные регионы, действует только одна гидроэлектростанция - Зейская. При отсутствии других маневренных электростанций в ОЭС Востока наблюдается дефицит пиковых мощностей.

В настоящее время в Восточной Сибири и на Дальнем Востоке эксплуатируется 12 ГЭС суммарной установленной мощностью 25,8 млн. кВт. Из них три крупных ГЭС установленной мощностью 2870 МВт находятся на Дальнем Востоке. В Восточной Сибири наибольшая доля ГЭС в Республике Хакасии: в 1998 г. установленная мощность Саяно-Шуненской ГЭС составляла 96 % генерирующих мощностей республики, она производила 89 % всей вырабатываемой здесь электроэнергии. В Иркутской области эти показатели равнялись соответственно 70 % и 85 %. Свыше половины мощности и выработки электроэнергии приходилось на ГЭС (Усть-Хантайскую и Курейскую) в изолированной Норильской энергосистеме на севере Красноярского края.

Мощность ГЭС Восточной Сибири составляет 22,9 млн. кВт, или 63% от суммарной генерирующей мощности всех параллельно работающих электростанций.

На Дальнем Востоке, несмотря на низкий уровень освоенности гидроэнергопотенциала, роль гидроэлектростанций в электроснабжении отдельных дальне-восточных территорий очень существенна. Так, Вилюйские ГЭС-1, 2 полностью покрывают потребность в электроэнергии Западно-Якутского энергорайона.

Гидроэлектростанции играют решающую роль и в обеспечении бесперебойности энергоснабжения. С этой точки зрения можно особо выделить ангарские ГЭС, имеющие водохранилища многолетнего регулирования (Иркутскую и Братскую). Использование многолетних запасов воды из этих водохранилищ способствуют преодолению трудностей с топливоснабжением тепловых электростанций на всей территории, обслуживаемой ОЭС Сибири. Аналогичную роль играет Колымская ГЭС, обеспечивающая бесперебойное электро- и теплоснабжение населения и хозяйства Магаданской области при крайней неритмичности завоза топлива.

2.1 Ангаро-Енисейский каскад ГЭС

Ангаро-Енисейский каскад ГЭС включает: Иркутскую, Братскую, Усть-Илимскую и Богучанскую (строящуюся) на Ангаре; Красноярскую (Дивногорск), Майнскую (пос. Майна) и Саяно-Шушенскую (Саяногорск) на Енисее.

Гидроэлектростанции каскада - опорные узлы Единой энергетической системы Центральной Сибири, работают в единой энергосистеме Сибири в компенсационном, взаимозависимом режиме.

Ангарский каскад, крупнейший каскад гидроэлектростанций на р. Ангаре, располагающей огромными потенциальными запасами водной энергии, для использования которой намечено сооружение 6 крупных ГЭС с суммарной мощностью около 14 Гвт (млн. квт) и средней годовой выработкой свыше 70 Твт·ч (млрд. квт·ч) электроэнергии. Благоприятные условия местности позволяют возводить высоконапорные плотины при относительно незначительных удельных объёмах строительных работ и получать дешёвую электроэнергию. 1-й ступенью ангарского каскада была Иркутская ГЭС, введённая на проектную мощность 660 Мвт (тыс. квт) в 1958 году. 2 и 3-й ступенями в схеме низконапорные Суховская и Тельминская ГЭС с установленными мощностями по 400 Мвт каждая и суммарной выработкой электроэнергии 3,4 Твт·ч в средний по водности год. 4-я ступень каскада - Братская ГЭС, достигшая в 1966 году мощности 4,1 Гвт. В 1969 году в 40 км ниже устья правого притока Ангары - р. Илим строилась 5-я ступень - Усть-Илимская ГЭС, её мощность 4,3 Гвт, среднегодовая выработка 21,8 Твт·ч. Последняя ступень ангарского каскада - Богучанская ГЭС со среднемноголетней выработкой около 18 Твт·ч строится выше с. Богучаны. Ангарский каскад - основа для развития в районах Приангарья крупных энергоёмких промышленных комплексов по производству алюминия, титана, магния и других видов продукции.


2.2 Наиболее крупные ГЭС Сибири


Красноярская ГЭС, крупнейшая ГЭС мира, запущена в 1972 году. Расположена на р. Енисей, выше г.Красноярска, в месте пересечения Енисеем отрогов Восточного Саяна у г.Дивногорска. Установленная мощность 6000 Мвт (6 млн. квт), среднемноголетняя выработка электроэнергии - 20,4 млрд. квт×ч в год. В состав сооружений входят: русловая бетонная плотина высота 124 м, здание ГЭС длина 430 м, судоподъёмник, открытые распределительные устройства напряжением 220 и 500 кв. Длина напорного фронта гидроузла 1175 м, максимальный напор 101 м, расход воды через плотину 12000 м3/сек. Плотина образует Красноярское водохранилище.

В станционной части плотины размещены 24 водозаборных отверстия, а в водосбросной 7 водосливных пролётов шириной по 25 м. В здании ГЭС установлены 12 гидроагрегатов с турбинами радиально-осевого типа мощностью по 508 Мвт. Управление, регулирование и контроль работы электромеханического оборудования ГЭС осуществляются автоматически, с использованием средств телемеханики ближнего действия. Судоподъёмник продольно-наклонного типа с поворотным устройством расположен на левом берегу. Перемещение судов из одного бьефа в другой производится в самоходной судовозной камере.

Первые гидроагрегаты пущены в ноябре 1967 году, в 1971 с пуском последнего, 12-го гидроагрегата ГЭС достигла проектной мощности, в июле 1972 года принята государственной комиссией в промышленную эксплуатацию.

Красноярская ГЭС - одна из наиболее экономичных ГЭС. Она является важнейшим опорным пунктом Объединённой энергосистемы Сибири. Расположение ГЭС практически в центре энергообъединения позволяет использовать её мощность и электроэнергию в любой части огромной территории, обслуживаемой энергосистемой.

Саяно-Шушенская ГЭС построенная в 1975году в долине р. Енисей, вблизи поселка Майна. Установленная мощность 6400 Мвт. Среднегодовая выработка электроэнергии составит 23,8 млрд.кВт.ч. В состав гидроузла входят: арочно-гравитационная плотина максимальной высотой 242 м и длина по гребню 1066 м; здание ГЭС приплотинного типа с 10 агрегатами по 640 Мвт; расчётный напор 194 м; эксплуатационный водосброс с водобойным колодцем; предусмотрена возможность устройства судоподъёмника. Плотина образует водохранилище сезонного регулирования полным объёмом 31,3 км3 и полезным объёмом 15,3 км3. Работы подготовительного периода начаты в 1964 году. Электроэнергия, вырабатываемая ГЭС, будет передаваться по высоковольтным линиям напряжением 500 квю в объединённую энергосистему Сибири. Саяно-Шушенская ГЭС - основа крупного территориально-производственного комплекса.

Братская ГЭС, одна из крупнейших в мире ГЭС. Сооружена на р.Ангаре в Падунском сужении вблизи г. Братска Иркутской области. Строительство начато в 1955 году, в 1961 году пущены первые 4 гидроагрегата. Проектная мощность ГЭС 4500 Мвт. Средняя годовая выработка электроэнергии 22,7 млрд. квт·ч. К 1967 году мощность станции достигла 4100 Мвт. В здании ГЭС установлено 16 гидроагрегатов с мощностью по 225 Мвт и 2 гидроагрегата по 250 Мвт. Турбины вертикальные радиально-осевые на напор 100 м и частоту вращения 125 об /м. В состав гидроузла входят: русловая бетонная плотина гравитационного типа длиной 924 м и максимальной строительной высотой 124,5 м, состоящая из станционной части (длиной 515 м, в которой расположены 20 водоприёмных отверстий и напорные трубопроводы), водосливной (длиной 242 м с 10 водосбросными отверстиями) и глухих частей общей длиной. 167 м; здание ГЭС длиной 516 м, расположенное у низовой грани станционной части плотины и примыкающее к левому берегу; береговые бетонные плотины общей длиной 506 м; правобережная земляная плотина длиной 2987 м и левобережная длиной 723 м; открытые распределительные устройства на напряжение 220 и 500 кв., расположенные на левом берегу р. Ангары. По гребню плотины проходит магистральная ж.-д. Тайшет - Лена, а ниже - шоссейная дорога. Напорные сооружения общей длиной 5140 метров образуют Братское водохранилище. Судоходные сооружения - объекты 2-й очереди.

При сооружении ГЭС, отдалённой от индустриальных центров, была создана мощная база строительной индустрии, большой комплекс предприятий Братского промышленного района и построен г.Братск. Электроэнергия, вырабатываемая ГЭС, по высоковольтным линиям э,лектропередачи 220 и 550 кв передаётся в Иркутско-Черемховский промышленный район, в район Красноярска и в объединённую энергетическую систему Восточной Сибири. В строительстве ГЭС по призыву партии и комсомола участвовали тысячи молодых рабочих и работниц, показавших образцы высокопроизводительного труда.

Иркутская ГЭС, электростанция Ангарского каскада, в 65 км от истока р. Ангары, в Иркутске. Мощность ГЭС 660 Мвт (660 тыс. квт). Установлено 8 гидроагрегатов с поворотно-лопастными турбинами и трёхфазными генераторами зонтичного типа. Среднегодовая выработка электроэнергии 4,1 млрд. квт×ч. Строительство проводилось в 1950 - 58 гг. В состав гидроузла входят: здание ГЭС совмещённого типа, земляная насыпная плотина общей длиной около 2,5 км и высотой 44 км, открытые распределительные устройства напряжением 110 и 220 кв. По гребню плотины проходит автомобильная дорога. Гидротехнические сооружения повышают средний уровень воды в озере Байкал, что позволяет использовать часть объёма озера в качестве водохранилища для многолетнего регулирования стока. ГЭС входит в Объединённую энергосистему Центральной Сибири и обеспечивает электроэнергией промышленность, ж.-д. транспорт и др. электропотребителей Иркутской области. Иркутская ГЭС стала первой крупной гидроэлектростанцией из построенных в Восточной Сибири.

В условиях дефицита топливных ресурсов большое значение имеет «Программа развития гидроэнергетики». Так в период до 2010 года должно быть завершено сооружение Бурейской ГЭС, Нижне-Бурейской ГЭС и Вилюйской ГЭС-3 на Дальнем Востоке, Зарамагской, Зеленчугских и Черекских ГЭС - на Северном Кавказе.

После 2010 года предусматривается завершение сооружения Богучанской ГЭС и Мокской ГЭС в Сибири, Усть-Среднеканской ГЭС и каскада Нижнезейских ГЭС на Дальнем Востоке. В период до 2020 года предполагается начало сооружения Южно-Якутского гидроэнергетического комплекса и каскада ГЭС на нижней Ангаре с вводом первых агрегатов головных ГЭС. На Дальнем Востоке вследствие высоких цен на топливо сооружение ГЭС более эффективно, чем в Сибири, и должно по возможности вестись высокими темпами. В ближайшие годы следует завершить строительство Бурейской ГЭС, которая позволит снять напряженность топливного баланса Дальнего Востока на предстоящие 10-15 лет. Кроме того, до 2010 года могут быть построены Нижнебурейская, Вилюйская-3 в Якутии, малые ГЭС на Камчатке. До 2015 года возможен также ввод Ургальской ГЭС в Хабаровском крае.


Заключение

Таким образом, в работе рассмотрено становление, развитие и перспективы гидроэнергетики России.

Большая часть потенциала гидроэнергетики сконцентрирована в районах Сибири и Дальнего Востока: здесь находится огромный ресурс производства дешевой электроэнергии.

Для решения приоритетных задач гидроэнергетики большое значение имеет «Энергетическая стратегия России на период до 2020».

Так в период до 2010 года должно быть завершено сооружение Бурейской ГЭС, Нижне-Бурейской ГЭС и Вилюйской ГЭС-3 на Дальнем Востоке и начат ввод мощностей строящихся электростанций.

После 2010 года предусматривается завершение сооружения Богучанской ГЭС и Мокской ГЭС в Сибири, Усть-Среднеканской ГЭС и каскада Нижнезейских ГЭС на Дальнем Востоке.

В период до 2020 года предполагается начало сооружения Южно-Якутского гидроэнергетического комплекса и каскада ГЭС на нижней Ангаре с вводом первых агрегатов головных ГЭС.

Широкомасштабное вовлечение новых ГЭС в энергобаланс ЕЭС России не только поспособствует вытеснению дефицитного газа, но и могло бы иметь весьма высокую цену на энергорынках Японии, Республики Корея, Северного Китая, где развитие энергетического сектора планируется практически исключительно за счет АЭС и ТЭС.

Гидроэнергетика в новом тысячелетии может стать структурным лидером в развитии энергетики России, т.к. это наиболее развитая, экологически безопасная и инвестиционно привлекательная отрасль.

Кроме этого, приоритетное внимание к развитию гидроэнергетики позволит сэкономить дорогостоящие первичные углеводородные ресурсы.



Список использованной литературы

1.   Асарин А.Е. Развитие гидроэнергетики России / А.Е.Асарин // Гидротехн. стр-во, 2003.- № 1.- С. 2-7.

2.   Беляев Л.С. Интеграция электроэнергетики восточных районов России и стран Северо-восточной Азии / Л.С. Беляев, Е.Д. Волкова, Н.И. Воропай и др. // Регион: экономика и социология, 2002. - №31. - С.4.

3.   Васильев Ю.С. Состояние и перспективы развития гидроэнергетики России / Ю.С. Васильев // Известия Акад. Наук. Энергетика, 2003.- № 1.- С. 50-57.

4.      Иванов И. Н. Гидроэнергетика Ангары и природная среда / АН СССР. Сибирское отделение; Байкальский экологический музей; Под ред. Г.И. Галазий.- Новосибирск: Наука, 1991.- 128 с.

5.      Савельев В.А. Современные проблемы и будущее гидроэнергетики Сибири / В.А.Савельев. - Новосибирск: Наука, 2000. - 200 с.


Страницы: 1, 2



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать