Грозы, удары молний, градобитие
Балтийская государственная академия рыбопромыслового флота
Кафедра защиты в чрезвычайных ситуациях
Контрольная работа
Дисциплина: "Опасные природные процессы"
Тема: "Грозы, удары молний, градобитие"
Калининград
2008Введение
По оценкам экспертов ООН, за последние сто лет в разных странах мира произошло более 50 тысяч природных катастроф, ставших причиной гибели свыше 4 млн. человек. Из 234 наиболее масштабных природных катастроф 1950-1999 годов 38% были штормы, 29% - землетрясения, 27% - наводнения, а 6% составили все остальные виды природных опасностей. Землетрясения унесли жизни 47% погибших, штормы - 45%, наводнения - 7%, другие виды опасностей - 1%. Экономические потери имеют следующее соотношение: 35% - от землетрясений, 30% - от наводнений, 28% - от штормов и 7% - от других опасностей.
Территория России подвержена воздействию широкого спектра опасных природных процессов. Динамика социальных потерь от чрезвычайных ситуаций (ЧС), приведенная на графике 1 и в таблице, охватывает период с 1901-го по 2000 год.
График 1. Динамика роста социальных потерь от природных катастроф в России (1901-2000 гг.)
Таблица. Распределение ЧС природного характера и связанных с ними социальных потерь (Россия, 1901-2000 гг.)
Годы Число ЧС Общее число погибших 1901-1910 2 16 562 1911-1920 2 2 500 000 1921-1930 2 23 1931-1940 2 687 1941-1950 1 110 000 1951-1960 1 1961-1970 4 155 1971-1980 5 100 1981-1990 46 694 1991-2000 75 3 441 |
Актуальность предупреждения ОПП обуславливается:
1. увеличением в последние годы ущерба от стихийных бедствий;
2. возрастанием количества природных и природно-техногенных чрезвычайных ситуаций;
3. низким уровнем оправдываемости прогнозов опасных и особо опасных природных явлений, производимых с помощью существующих методов прогнозирования;
4. недостаточной изученностью физических процессов взаимовлияния геосфер.
Основными задачами прогнозирования являются:
1. анализ основных опасностей природного характера для типовых объектов на территории России;
2. оценка рисков возникновения опасных и особо опасных природных явлений для отдельных регионов;
3. исследование количественных зависимостей, описывающих состояние и динамику атмосферных процессов, которые приводят к возникновению опасных и особо опасных природных явлений и чрезвычайным ситуациям;
4. систематизация опасных и особо опасных явлений природы, приводящих к экологическим катастрофам;
5. исследование экологических последствий опасных и особо опасных природных явлений;
6. исследование видов экономического ущерба и их рисков;
7. разработка методов прогнозирования рисков экологических катастроф, вызванных опасными и особо опасными природными явлениями;
8. исследование эффективности использования прогнозов при управлении рисками;
9. разработка физико-статистических моделей, алгоритмов, методик и программных продуктов для анализа и прогноза экологической обстановки при возникновении чрезвычайных ситуаций;
10. сбор и обобщение информации о случаях, когда опасные явления природы явились источниками экологических происшествий и катастроф;
11. разработка концептуальной модели опасного явления природы;
12. сбор и анализ информации об опыте управления в кризисных экологических ситуациях, накопленном в мире и, в частности, в РФ.
1. Реферативная часть
1.1 Грозы
1.1.1 Определение
Гроза - атмосферное явление, при котором внутри облаков или между облаком и земной поверхностью возникают электрические разряды - молнии, сопровождаемые громом.
1.1.2 Распространенность
Одновременно на Земле действует около полутора тысяч гроз, средняя интенсивность разрядов оценивается как 46 молний в секунду. По поверхности планеты грозы распределяются неравномерно. Над океанами гроз наблюдается приблизительно в десять раз меньше, чем над континентами. В тропической и субтропической зоне (от 30° северной широты до 30° южной широты) сосредоточено около 78% всех молниевых разрядов. Максимум грозовой активности приходится на Центральную Африку. В полярных районах Арктики и Антарктики и над полюсами гроз практически не бывает. Интенсивность гроз следует за солнцем: максимум гроз приходится на лето и дневные послеполуденные часы. Минимум зарегистрированных гроз приходится на время перед восходом солнца. На грозы влияют также географические особенности местности: сильные грозовые центры находятся в горных районах Гималаев и Кордильер.
Рисунок 1. Распространенность гроз по земному шару
1.1.3 Механизм развития
1.1.3.1 Стадии развития грозового облака
Рисунок 2. Стадии развития грозового облака
Необходимыми условиями для возникновения грозового облака является наличие условий для развития конвекции или иного механизма, создающего восходящие потоки, запаса влаги, достаточного для образования осадков, и наличия структуры, в которой часть облачных частиц находится в жидком состоянии, а часть в ледяном.
1.1.3.2 Классификация грозовых облаков
В настоящее время принято классифицировать грозы в соответствии с характеристиками самих гроз и эти характеристики в основном зависят от метеорологического окружения, в котором развивается гроза.
1.1.3.2.1 Одноячейковое облако
Рисунок 3. Стадии развития одноячейкового кучево-дождевого облака
Одноячейковые кучево-дождевые облака развиваются в дни со слабым ветром в малоградиентном барическом поле. Их называют еще внутримассовыми или локальными грозами. Они состоят из конвективной ячейки с восходящим потоком в центральной своей части. Они могут достигать грозовой и градовой интенсивности и быстро разрушаться с выпадением осадков. Размеры такого облака: поперечный 5-20 км, вертикальный - 8-12 км, продолжительность жизни около 30 минут, иногда до 1 часа. Серьезных изменений погоды после грозы не происходит.
1.1.3.2.2 Многоячейковые кластерные грозы
Рисунок 4. Схема многоячейковой грозовой структуры
Это наиболее распространенный тип гроз связанный с мезомасштабными (имеющими масштаб от 10 до 1000 км) возмущениями. Многоячейковый кластер состоит из группы грозовых ячеек, двигающихся как единое целое, хотя каждая ячейка в кластере находится на разных стадиях развития грозового облака. Грозовее ячейки имеют поперечные размеры 20-40 км, их вершины нередко поднимаются до тропопаузы и проникают в стратосферу. Многоячейковые кластерные грозы могут давать град, ливневые дожди и относительно слабые шквальные порывы ветра. Многоячейковый кластер может существовать в течение нескольких часов.
1.1.3.2.2 Многоячейковые линейные грозы (линии шквалов)
Многоячейковые линейные грозы представляют собой линию гроз с продолжительным, хорошо развитым фронтом порывов ветра на передней линии фронта. Линия шквалов может быть сплошной или содержать бреши. Приближающаяся многоячейковая линия выглядит как темная стена облаков, обычно покрывающая горизонт с западной стороны (в северном полушарии). Большое число близко расположенных восходящих / нисходящих потоков воздуха позволяет квалифицировать данный комплекс гроз как многоячеечный, хотя его грозовая структура резко отличается от многоячейковой кластерной грозы. Линии шквалов могут давать крупный град и интенсивные ливни. Данное явление характерно для Северной Америки, на территории Европы и Европейской территории России наблюдается реже.
1.1.3.2.3 Суперячейковые грозы
Рисунок 5. Вертикальная и горизонтальная структура суперячейкового облака
Суперячейковые облака относительно редки, но представляют наибольшую угрозу для здоровья и жизни человека и его имущества. Суперячейковое облако имеет одну зону восходящего потока и размер ячейки: диаметр порядка 50 км, высота 10-15 км (нередко верхняя граница проникает в стратосферу) с единой полукруглой наковальней. Скорость восходящего потока в суперячейковом облаке до 60 - 80 м/с. Вращающийся восходящий поток в суперячейковом облаке (в радарной терминологии называемым мезоциклоном) создает экстремальные по силе погодные явления, такие, как гигантский град (более 5 см в диаметре), шквальный ветер до 40 м/с и сильные разрушительные смерчи. Окружающие условия являются основным фактором в образовании суперячейкового облака. Необходима очень сильная конвективная неустойчивость воздуха. Температура воздуха у земли (до грозы) должна быть +27…+30 и выше, необходим ветер переменного направления, вызывающий вращение. Осадки, образующиеся в восходящем потоке, переносятся по верхнему уровню облака сильным потоком в зону нисходящего потока. Таким образом, зоны восходящего и нисходящего потоков оказываются разделенными в пространстве, что обеспечивает жизнь облака в течение длительного периода времени. Обычно на передней кромке суперячейкового облака наблюдается слабый дождь. Ливневые осадки выпадают вблизи зоны восходящего потока, а наиболее сильные осадки и крупный град выпадают к северо-востоку от зоны основного восходящего потока.
1.1.3.3 Физические характеристики грозовых облаков
Самолетные и радарные исследования показывают, что единичная грозовая ячейка обычно достигает высоты порядка 8 - 10 км и живет порядка 30 минут. Изолированная гроза обычно состоит из нескольких ячеек находящихся в различных стадиях развития и длится порядка часа. Крупные грозы могут достигать в диаметре десятки километров, их вершина может достигать высоты свыше 18 км, и они могут длиться много часов.
1.1.3.3.1 Восходящие и нисходящие (шквалы) потоки
Восходящие и нисходящие потоки в изолированных грозах обычно имеют диаметр от 0,5 до 2,5 км и высоту от 3 до 8 км. Вблизи поверхности земли потоки обычно увеличиваются в диаметре, а скорость в них падает по сравнению с выше расположенными потоками. Характерная скорость восходящего потока лежит в диапазоне от 5 до 10 м/с, и доходит до 20 м/с в верхней части крупных гроз. Наиболее сильные восходящие потоки наблюдаются в организованных грозах.
В некоторых грозах возникают интенсивные нисходящие воздушные потоки, создающие на поверхности земли ветер разрушительной силы. В зависимости от размера такие нисходящие потоки называются шквалами или микрошквалами. Шквал диаметром более 4 км в диаметре может создавать ветер до 60 м/с. Микрошквалы имеют меньшие размеры, но создают ветер скоростью до 75 м/с. Если порождающая шквал гроза образуется из достаточно теплого и влажного воздуха, то микрошквал будет сопровождаться интенсивным ливневым дождем. Однако если гроза формируется из сухого воздуха, осадки во время выпадения могут испариться (испаряющиеся в воздухе полосы осадков) и микрошквал будет сухим. Нисходящие воздушные потоки являются серьезной опасностью для самолетов, особенно во время взлета или посадки, так как они создают вблизи земли ветер с сильными внезапными изменениями скорости и направления.