1.2 Симметричные и несимметричные источники излучения
По характеру распределения силы излучения (света) точечные источники можно разделить на симметричные и несимметричные.
Такое деление обусловлено различной формой фотометрического тела. Под фотометрическим телом излучателя понимают распределение силы излучения (света) в пространстве. Симметричные источники излучения имеют одинаковые значения потока излучения или светового потока по всем направлениям, составляющим одинаковые углы с осью симметрии излучателя. Cимметричный излучатель представляет собой фотометрическое тело в виде тела вращения вокруг своей оси (рис.2). Для такого источника все значения силы излучения (света) под любым углом а к оси симметрии источника будут одинаковы.
Рис.2 Модель симметричного излучателя
Этo позволяет пространственное распределение силы света выразить в виде графических кривых . Такие кривые строят в полярной или прямоугольной системе координат для вертикального или горизонтального сечения фотометрического тела (рис.3). Прямоугольную систему координат применяют для источников с распределением потоков излучения в пределах небольшого угла, например у прожекторов.
Рис.3. "Поперечная кривая" распределения силы света симметричного источника.
При сечении симметричного фотометрического тела вертикальной плоскостью по оси симметрии получают так называемую "продольную кривую" распределения силы света. Так как она симметрична, то ее строят обычно в пределах от 0 до 180°.
Сечение симметричного фотометрического тела горизонтальной плоскостью, проходящей перпендикулярно оси симметрии через центр источника, позволяет получить "поперечную кривую" распределения силы света.
Несимметричные излучатели не обладают симметрией распределения сил света, относительно оси вследствие чего их фотометрическое тело отличается от тела вращения и значения силы света неодинаковы для различных продольных плоскостей. В связи с этим строят семейство продольных кривых силы излучения, соответствующих различным направлениям в пространстве. Строят графическое распределение силы света в виде семейства кривых при = const в полярной системе координат (рис.4).
Рис.4. "Продольные кривые" распределения силы света несимметричного источника
1.3 Источники с различным спектральным распределением энергии
По спектральному распределению в светотехнике различают три основных вида источников излучения: тепловые, газоразрядные и лазерные. Последние основаны на явлении индуцированной (вынужденной) люминесценции.
Важнейшей характеристикой этих источников является спектральный состав излучения. Чаще всего он изображается графически в виде кривой спектрального распределения энергии. В зависимости от вещества излучателя спектры имеют различный характер. Различают спектры излучения линейчатые, полосатые и непрерывные (сплошные).
1.3.1 Тепловые источники излучения
Тепловые источники света используют свойство тел излучать при нагревании лучистую энергию. При достаточно большой температуре это излучение переходит в область видимого - тело начинает светиться. Световое излучение увеличивается с увеличением температуры тела.
Любое тело, имеющее цветовую температуру выше абсолютного нуля, излучает энергию. Если возбужденное состояние атомов и молекул этого тела вызвано нагреванием, то излучение, посылаемое этим телом в пространство, является тепловым.
Тепловое излучение возникает в результате изменения энергетических состояний электронов и ионов, входящих в состав излучающего тела, независимо от его агрегатного состояния. Однако для светотехники наибольший интерес представляют твердые тела. Излучение таких источников состоит из бесконечно большого числа монохроматических излучений, мощность которых непрерывно меняется с изменением длины волны (рис.5).
Рис.5. Спектральное распределение энергии тепловых источников: 1 - лампы накаливания; 2 – Солнца
Примером теплового источника может служить обыкновенная лампа накаливания, имеющая обычно излучающий элемент в виде нити или спирали из вольфрама. Помимо основных электрических (номинальное напряжение, мощность), светотехнических (световой поток, сила света) и эксплуатационных (срок службы) параметров лампы накаливания имеют еще одну важную характеристику - световую отдачу . Эта величина, выражаемая в лм/Вт, показывает сколько света (лм) излучает лампа на каждый ватт электрической энергии, подводимой к лампе. Чем выше световая отдача, тем лучше осуществляется преобразование электрической энергии в световую. Световая отдача ламп накаливания невысока и составляет 7-22 лм/Вт.
Используемые на практике в качестве источников освещения тепловые излучатели в большой степени отличаются друг от друга по спектральному составу и мощности излучения. Для характеристики тепловых источников с целью их практического применения и возможности их сравнения друг с другом используют искусственную модель теплового излучателя - абсолютно черное тело.
Абсолютно черным телом называется такое тело, которое способно полностью поглотить все падающие на него излучения. Поэтому, согласно закону Кирхгофа, такое тело испускает при данной температуре большую энергию, чем любой другой источник. Модель абсолютно черного тела можно получить, если в полом шаре из непрозрачного и зачерненного изнутри материала сделать отверстие. При этом весь свет, попадающий в полость шара, практически полностью поглощается.
Цветовая температура - при которой относительный спектральный состав его излучения тождественен составу излучения реального тела. Понятие цветовой температуры применимо только к тепловым источникам с непрерывным спектром излучения. Лишь с достаточной долей приближения можно характеризовать цветовой температурой источники смешанного излучения.
1.3.2 Газоразрядные источники
Газоразрядные источники света, приборы, в которых электрическая энергия преобразуется в оптическое излучение при прохождении электрического тока через газы и др. вещества (например, ртуть), находящиеся в парообразном состоянии.
В источниках этого типа используются излучения газов, возникающие под действием проходящего через них тока. Большое число газов и паров металлов, в которых можно получить достаточно мощный разряд, обусловило возможность создания большого числа разновидностей. Газоразрядных ламп. Газоразрядный источник света представляет собой стеклянную, керамическую или металлическую (с прозрачным выходным окном) оболочку цилиндрической, сферической или иной формы, содержащую газ, иногда некоторое количество металла или др. вещества (галоидной соли) с достаточно высокой упругостью пара. В оболочку герметично вмонтированы (впаяны) электроды, между которыми происходит разряд. Существуют газоразрядные источники света с электродами, работающими в открытой атмосфере или протоке газа, например угольная дуга.
Газоразрядный источник света применяют для общего освещения, облучения, сигнализации и др. целей. В Газоразрядные источники света для общего освещения важны высокая световая отдача, приемлемый цвет, простота и надёжность в эксплуатации. Наиболее массовыми газоразрядными источниками света для общего освещения являются люминесцентные лампы Газоразрядные источники образуют линейчатый спектр, определяемый составом инертных газов или паров металлов, в которых происходит электрический разряд. В результате этого процесса атомы или молекулы газа возбуждаются электронным ударом и затем, испуская свет, переходят в исходное состояние. Примером такого источника может служить ртутная лампа высокого давления (Рис.6). Представленное на рисунке расположение спектральных линий свойственно только ртути.
Рис.6. Спектральное распределение энергии ртутной лампы высокого давления.
У источников с линейчатым спектром излучение происходит в пределах узкого участка спектра. Поток излучения источника с таким линейчатым спектром складывается из монохроматических потоков отдельных линий:
где - общий поток излучения источника с линейчатым спектром; , , , …. -монохроматические потоки излучения отдельных линий.
Цвет излучения и характер спектра зависят от состава газа или пара, наполняющего источник света, и условий разряда. Подбирая соответствующие газ и условия разряда, получают излучение в любой части спектра.
Газоразрядные лампы могут быть непрерывного или импульсного горения. В газоразрядных лампах непрерывного горения используют преимущественно тлеющий и дуговой разряды.
Для тлеющего разряда характерны малое давление газа или паров металла, заполняющих разрядный промежуток, и малая плотность тока на электродах лампы. Лампы тлеющего разряда имеют, как правило, форму длинных трубок. Вследствие малых плотностей тока интенсивность излучения таких источников сравнительно невелика.
Дуговой разряд происходит при больших плотностях тока. Этот вид разряда наиболее широко используется в газоразрядных лампах, поскольку с его помощью удается создать источники света большой яркости при сравнительно низких рабочих напряжениях.
Импульсные газоразрядные лампы используют для создания как редких, но мощных импульсов, так и частых, но менее мощных. Длительность вспышки импульсных ламп составляет короткий промежуток времени. В связи с этим, несмотря на большую силу света в импульсе суммарная мощность импульсов достаточно мала.
1.3.3 Источники излучения на основе явления люминесценции
Под люминесценцией понимают способность ряда веществ излучать энергию, накопленную в пределах атома при переходе электронов с более высоких энергетических уровней на более низкие. В зависимости от того, за счет какой энергии происходит возбуждение атома, различают фотолюминесценцию, хемилюминесценцию, катодолюминесценцию и т.д.
Падающий на вещество свет частично отражается, а частично поглощается. Энергия поглощаемого света в большинстве случаев вызывает лишь нагревание тел. Однако некоторые тела сами начинают светиться непосредственно под действием падающего на него излучения. Это и есть фотолюминесценция. Свет возбуждает атомы вещества. Излучаемый при фотолюминесценции свет имеет, как правило, большую длину волны, чем свет, возбуждающий свечение. Чаще всего фотолюминесценция используется в лампах дневного света.
Явление фотолюминесценции нашло широкое применение при создании источников излучения. Сущность фотолюминесценции состоит в фото возбуждении люминофора - вещества с дефектами кристаллической решетки. Оно способно светить как в процессе возбуждения, так и после - фотонами поглощенного УФ-излучения оптической части спектра.