История развития ядерной физики
p> Ядерные реакции

Развитие ядерной физики в большой степени определяется исследованиями в такой важной ее области, как ядерные реакции. Однако после того, как
Резерфорд впервые наблюдал ядерную реакцию, до появления первой модели ядерной реакции прошло довольно много лет. [pic]-Частицы от радиоактивных источников могли эффективно преодолеть кулоновский барьер только на самых легких ядрах. С появлением ускорителей ситуация радикально изменилась, теперь можно было бомбардировать ядра не только [pic]-частицами. Повысились энергии и интенсивности пучков частиц.

Первая модель ядерной реакции появилась в 1935 году, это была модель
Оппенгеймера - Филлипса, предложенная для интерпретации реакции (d,p) при низких энергиях.

Дальнейший прогресс представлений о механизмах ядерных реакций долгое время был связан с концепцией составного ядра (компаунд-ядра), которая была предложена в 1936 году Н. Бором для объяснения резонансной структуры сечений захвата нейтронов и протонов низких энергий атомными ядрами.

Первое количественное описание реакции, идущей через компаунд-ядро, было получено Брейтом и Е. Вигнером в 1936 году.

Широкое распространение в расчетах сечений ядерных реакций получила феноменологическая модель испарения, предложенная В. Вайскопфом в 1937 году. В 30-50-х годах на основе "первых принципов" развивалась формальная теория ядерных реакций. Различные варианты формальной теории не содержали конкретных физических предположений таких, например, как гипотеза независимости, и в принципе могли описывать различные механизмы ядерных реакций. Однако применение их для практических расчетов было связано с большими трудностями. Тем не менее развитые в этих работах подходы позволили глубже понять физику процессов, происходящих в ядре и были использованы при создании моделей.

К началу 50-х годов создание последовательной теории реакций, идущих через составное ядро, было в основном завершено. С помощью теории компаунд- ядра удалось удовлетворительно описать большое количество экспериментальных данных. При вычислении сечений предполагали, что любая частица, попав в ядро, должна поглотиться (модель "черного" ядра), т.е. одночастичное движение должно полностью затухнуть. Однако начали появляться экспериментальные данные, которые свидетельствовали, что одночастичное движение не затухает полностью.

Для описания усредненного поведения сечений Г. Фешбах, К. Портер и
В. Вайскопф в 1954 году предложили оптическую модель, которая получила свое название из-за аналогии рассеяния частиц на ядре с прохождением света через полупрозрачную сферу. В оптической модели предполагается, что ядро может быть описано комплексной потенциальной ямой
U(r) = V(r) + iW(r), где мнимая часть W(r) описывает поглощение частиц падающего пучка.

Успехи оптической модели в описании упругого рассеяния привели к пониманию механизма протекания прямых ядерных реакций, в принципе отличающегося от механизма протекания ядерных реакций через составное ядро.
После появления в 1966 году пионерской работы Дж. Гриффина наметился экспоненциальный рост экспериментальных и теоретических работ, посвященных так называемым предравновесным процессам. Сегодня предравновесные процессы делят на два класса: многоступенчатые прямые процессы, в которых происходит эволюция открытых состояний, и многоступенчатые компаунд-процессы, связанные с эволюцией закрытых состояний и связи их с открытыми состояниями. Под открытыми состояниями понимаются состояния, в которых хотя бы один нуклон находится выше энергии связи и может вылететь. В закрытых состояниях все нуклоны находятся ниже энергии связи.
В реакциях с тяжелыми ионами в 70-е годы в Дубне группой В. Волкова был открыт новый тип ядерных реакций - реакции глубоконеупругих передач.
Специфика глубоконеупругих передач обусловлена качественными изменениями процесса взаимодействия двух сложных ядер по сравнению с реакциями с легкими ионами. В основе этого взаимодействия лежат процессы формирования, эволюции и распада специфического ядерного комплекса - двойной ядерной системы. За счет кинетической энергии сталкивающиеся ядра проникают друг в друга, возрастает зона перекрытия их поверхностей. Из-за большой вязкости ядерной материи и соответственно из-за большого ядерного трения подавляющая часть кинетической энергии переходит в возбуждение системы, скорость относительного движения падает до нуля. Часть кинетической энергии переходит в энергию вращения ядер. Однако несмотря на интенсивное взаимодействие, оболочечная структура обеспечивает ядрам сохранение их индивидуальности. В зоне обмена нуклоны переходят из одного ядра в другое, однако нуклоны внутренних оболочек образуют довольно устойчивые коры, сохраняющие индивидуальность ядер. Эволюция системы происходит в направлении минимума потенциальной энергии системы, в процессе которой нуклоны от одного ядра оболочка за оболочкой передаются другому. Если кулоновские и центробежные силы превосходят силы притяжения, система будет распадаться. Однако, если результирующая сила невелика, распад будет происходить медленно и от ядра к ядру может быть передано значительное количество нуклонов.

Деление ядер

|Деление тяжелых ядер происходит при захвате |[pic] |
|нейтронов. При этом испускаются новые частицы и| |
|освобождается энергия связи ядра, передаваемая | |
|осколкам деления. Это фундаментальное явление | |
|было открыто в конце 30-ых годов немецкими | |
|учеными Ганом и Штрасманом, что заложило основу| |
|для практического использования ядерной | |
|энергии. | |


Ядра тяжелых элементов - урана, плутония и некоторых других интенсивно поглощают тепловые нейтроны. После акта захвата нейтрона, тяжелое ядро с вероятностью ~0,8 делится на две неравные по массе части, называемые осколками или продуктами деления. При этом испускаются - быстрые нейтроны/
(в среднем около 2,5 нейтронов на каждый акт деления), отрицательно заряженные бета-частиц и нейтральные гамма-кванты, а энергия связи частиц в ядре преобразуется в кинетическую энергию осколков деления, нейтронов и других частиц. Эта энергия затем расходуется на тепловое возбуждение составляющих вещество атомов и молекул, т.е. на разогревание окружающего вещества.
После акта деления ядер рожденные при делении осколки ядер, будучи нестабильными, претерпевают ряд последовательных радиоактивных превращений и с некоторым запаздыванием испускают "запаздывающие" нейтроны, большое число альфа, бета и гамма-частиц. С другой стороны некоторые осколки обладают способностью интенсивно поглощать нейтроны.

Изучение взаимодействия нейтронов с веществом привело к открытию ядерных реакций нового типа. В 1939 г. О. Ган и Ф. Штрассман исследовали химические продукты, получающиеся при бомбардировке нейтронами ядер урана.
Среди продуктов реакции был обнаружен барий - химический элемент с массой много меньше, чем масса урана. Задача была решена немецкими физиками
Л. Мейтнер и О. Фришем, показавшими, что при поглощении нейтронов ураном происходит деление ядра на два осколка.

92U + n [pic]56Ba + 36Kr +kn, где k > 1.
При делении ядра урана тепловой нейтрон с энергией ~0.1 эВ освобождает энергию ~200 МэВ. Существенным моментом является то, что этот процесс сопровождается появлением нейтронов, способных вызывать деление других ядер урана – цепная реакция деления. Таким образом, один нейтрон может дать начало разветвленной цепи делений ядер, причем число ядер, участвующих в реакции деления будет экспоненциально возрастать. Открылись перспективы использования цепной реакции деления в двух направлениях:

. управляемая ядерная реакция деления – создание атомных реакторов;

. неуправляемая ядерная реакция деления – создание ядерного оружия.

В 1942 году под руководством Э. Ферми в США был построен первый ядерный реактор. В СССР первый реактор был запущен в 1946 году под руководством
И. Курчатова. В 1954 году в Обнинске начала работать первая в мире атомная электростанция. В настоящее время тепловая и электрическая энергия вырабатывается в сотнях ядерных реакторов, работающих в различных странах мира.

Новые горизонты ядерной физики.

Радиоактивные пучки

В то время когда в физике частиц происходило продвижение в сторону высоких энергий и открывались новые частицы, в состав которых входили все более массивные кварки, качественно изменилась ситуация и в "традиционной" ядерной физике. Улучшение техники ионных пучков и методов сепарации короткоживущих изотопов существенно расширило число исследованных ядер. К концу XX века было открыто ~ 3000 атомных ядер. Всего в границах ядерной стабильности по существующим оценкам их может быть около 7000.

Наряду с хорошо известными модами распада атомных ядер - [pic],
[pic],[pic] и спонтанным делением были обнаружены новые типы радиоактивности. В 1962 году в ОИЯИ (Дубна) впервые была зарегистрирована протонная радиоактивность. Она наблюдалась для нейтронодефицитных ядер вблизи границы протонной стабильности.

Было обнаружено, что ядра могут самопроизвольно испускать ядра тяжелее
4He – кластерная радиоактивность. Впервые кластерная радиоактивность наблюдалась в распаде

223Ra[pic]209Pb + 14C.

Какие сегодня приоритетные направления исследований в области ядерной физики?

. Поиск новых сверхтяжелых ядер.

. Исследоваание свойств ядерной материи в экстремальных условиях - в области низкой температуры и низкой плотности ядерной материи и в области высокой температуры и высокой плотности ядерной материи.

Состояния с высокой плотностью ядерной материи интенсивно исследуются в столкновениях релятивистских ядер. Ведутся исследования в области мультифрагментации и полного развала ядра на нейтроны и протоны.

. Исследование формы и свойств атомных ядер в супердеформированных состояниях и в состояниях с экстремально большими спинами.

. Исследование атомных ядер вдали от долины стабильности, вблизи от границ нейтронной и протонной стабильности.

. Изучение новых типов радиоактивного распада. Поиск новых долгоживущих изомерных состояний

. Открытым и требующим дальнейших исследований является вопрос о роли кварковых степеней свободы и их влияние на короткодействующую составляющую ядерных взаимодействий.

. Кварк-глюонная структура нуклона и изменение его свойств в ядерной материи.

В настоящее время методы сепарации и детектирования достигли такого совершенства, что основные характеристики атомных ядер: масса, период полураспада, основные моды распада - могут быть получены на основе анализа небольшого их числа.

Метод сепарации тяжелых ионов на лету позволяет получать моноизотопные пучки ускоренных ядер вплоть до урана. Появились новые экспериментальные методы для изучения свойств атомных ядер - комбинации ускорителей с ионными ловушками для низкоэнергетических ионов и накопительные кольца для ионов низких и средних энергий. Существенный прогресс в исследовании ядер с необычным отношением N/Z - экзотических ядер - связан с возможностью накопления высокоэнергетических вторичных пучков радиоактивных ядер и изучения реакций на этих пучках.

Детекторы. Ускорители

Сегодня кажется почти неправдоподобным, сколько открытий в физике атомного ядра было сделано с использованием природных источников радиоактивного излучения с энергией всего лишь несколько МэВ и простейших детектирующих устройств. Открыто атомное ядро, получены его размеры, впервые наблюдалась ядерная реакция, обнаружено явление радиоактивности, открыты нейтрон и протон, предсказано существование нейтрино и т.д.
Основным детектором частиц долгое время была пластинка, с нанесенным на нее слоем сернистого цинка. Частицы регистрировались глазом по производимым ими в сернистом цинке вспышкам света. Черенковское излучение впервые наблюдалось визуально. Первая пузырьковая камера, в которой Глезер наблюдал треки [pic]-частиц была с наперсток. Источником частиц высоких энергий в то время были космические лучи - частицы, образующиеся в мировом пространстве.
В космических лучах впервые наблюдались новые элементарные частицы. 1932 год - открыт позитрон (К. Андерсон), 1937 год - открыт мюон (К. Андерсон,
С. Недермейер), 1947 год - открыт [pic]-мезон (Пауэл), 1947 год - обнаружены странные частицы (Дж. Рочестер, К. Батлер).

Со временем экспериментальные установки становились все сложней.
Развивалась техника ускорения и детектирования частиц, ядерная электроника.
Успехи в физике ядра и элементарных частиц все в большей степени определяются прогрессом в этих областях. Нобелевские премии по физике часто присуждаются за работы в области техники физического эксперимента.

Создание первых ускорителей Дж. Кокрофтом и Э. Уолтоном, Р. Ван-де-
Графом, Э. Лоуренсом в 1931-32 гг. открыло новую эру в ядерной физике.
Экспериментаторы получили в свое распоряжение удобные инструменты, на которых можно было получать пучки ускоренных заряженных частиц с энергией от нескольких МэВ до десятков МэВ.

В 1944-45 годах В. Векслер и независимо от него Э. Макмиллан открыли принцип автофазировки, позволяющий достигать релятивистских энергий ускоренных частиц. Открытие принципа автофазировки привело к появлению новых типов ускорителей - фазотронов, синхротронов, синхрофазотронов.
Разработка метода сильной фокусировки позволила получать уникальные по своим параметрам пучки (с малыми поперечными размерами, высокой интенсивностью, большими энергиями).

Первые ускорители высоких энергий были построены в Дубне (ОИЯИ), вблизи
Женевы (CERN) и Брукхейвене (BNL). В первых ускорителях пучок частиц направлялся на неподвижную мишень. Однако по мере увеличения энергии налетающих частиц все большая часть энергии пучка бесполезно расходуется на движение центра масс образующейся системы. Если же сталкиваются между собой два пучка можно получить значительный выигрыш в энергии, так как при лобовом столкновении двух пучков частиц с одинаковыми массами и одинаковыми энергиями центр масс будет оставаться неподвижным. Однако, чтобы при этом сталкивающиеся пучки эффективно взаимодействовали, необходимо создать в области столкновения высокую плотность частиц. Ускорители такого типа были созданы и получили название ускорителей на встречных пучках или коллайдеров. Первые электронные коллайдеры были построены в 1965 году в ИЯФ
(Новосибирск) и Стенфордской национальной лаборатории. В 1971 году был построен первый протонный коллайдер, а в 1985 году - протон-антипротонный коллайдер.

Современные ускорители это комплексы, состоящие из нескольких ускорителей. На рис. 1показан ускорительный комплекс CERN, в котором планируется сталкивать протоны с суммарной энергией 14 ТэВ в системе центра масс. Он носит название LHC (Large Hadron Collider).
|[pic] |
|Рис. 1. Ускорительный комплекс CERN |


Протоны и ионы через накопительные кольца поступают в протонный синхротрон
PS (26 ГэВ), который инжектирует протоны в протонный синхротрон SPS
(450 ГэВ). Протоны из SPS будут поступать в LHC, где в настоящее время ускоряются встречные пучки электронов и позитронов на установке LEP. Пучки
LEP и LHC расположены в одном туннеле, в различных магнитных системах.
Инжектором электронов и позитронов является линейный ускоритель е+e-linacs.
Таблица 4

Регистрация заряженных частиц основана на явлении ионизации или возбуждении атомов, которое они вызывают в веществе, пролетая в нем. На этом основана работа таких детекторов как камера Вильсона, пузырьковая камера, искровая камера, фотоэмульсии, газовые сцинтилляцтонные и полупроводниковые детекторы. Незаряженные частицы ([pic]-кванты, нейтроны, нейтрино) детектируются по вторичным заряженным частицам, возникающим в результате их взаимодействия с веществом детектора. Быстрораспадающиеся частицы регистрируются по их продуктам распада. Большое применение нашли детекторы, позволяющие непосредственно наблюдать траектории частиц. Так с помощью камеры Вильсона, помещенной в магнитное поле были открыты позитрон, мюон и [pic]-мезоны, с помощью пузырьковой камеры - многие странные частицы, с помощью искровой камеры регистрировались нейтринные события и т.д. Современные измерительные установки в физике высоких энергий представляют из себя сложные системы, включающие десятки тысяч счетчиков, сложную электронику и способны одновременно регистрировать десятки частиц, рождающихся в одном столкновении. В качестве примера приведем установку
ATLAS, которая предназначена для работы на LHC (рис.2).
|[pic]Рис. 2. Установка ATLAS |

Основная задача установки ATLAS - поиск Хиггсовских бозонов.
Электронная система установки способна выделять 100 "интересных" событий в секунду из 1 миллиарда. В проекте ATLAS более полутора тысяч участников из
47 стран.

Заключение

В самом конце XIX столетия, занимаясь довольно хорошо известным в то время процессом люминесценции, Беккерель неожиданно наткнулся на совершенно новое явление - радиоактивность. Природа преподнесла исследователю подарок
- позволила заглянуть в новый, неизведанный мир субатомной физики. Перед исследователями, которые работали в этой области в XX веке, открылся совершенно иной мир, со своими закономерностями, так не похожий на привычный мир, описываемый классической физикой. Оказалось, что установленные новые законы работают не только на очень малых расстояниях, но и определяют физические явления, происходящие в колоссальных масштабах
Вселенной. XX век принес много неожиданностей и вряд ли сегодня мы можем предсказать, что готовит нам век XXI.

Используемая литература

1. Э. Ферми "Ядерная физика",пер. с англ., Москва, изд.

"Иностранная литература", 1951 г.

2. В.Е. Левин "Ядерная физика",Москва, Атомиздат, 1985 г.

3. А.С. Герасимов, Т.С. Зарицкая, А.П. Рудик "Справочник по образованию нуклидов в ядерных реакторах", Москва,

Энергоатомиздат, 1989 г.

4. В.Д. Сидоренко, В.М. Колобашкин, П.М. Рубцов, П.А. Ружанский

"Радиационные характеристики облученного ядерного топлива", справочник, Москва, Энергоатомиздат, 1983 г.



Страницы: 1, 2, 3, 4



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать